高精度導航接收機的群時延建模、測量和校準技術(shù)
本文關(guān)鍵詞:高精度導航接收機的群時延建模、測量和校準技術(shù) 出處:《國防科學技術(shù)大學》2014年博士論文 論文類型:學位論文
更多相關(guān)文章: 衛(wèi)星導航系統(tǒng) 高精度導航接收機 時間同步 衛(wèi)星精密定軌 傅立葉級數(shù) 群時延 群時延測量 群時延校準 相關(guān)峰 群時延均衡技術(shù) 窄帶擴頻信號
【摘要】:高精度導航接收機廣泛分布應用于衛(wèi)星導航系統(tǒng)的地面段、空間段、控制段,是衛(wèi)星導航系統(tǒng)完成星地時間同步、衛(wèi)星精密定軌等重要系統(tǒng)業(yè)務的核心測量設備,是保障導航系統(tǒng)服務性能的基礎。在高精度導航接收機中,通道群時延的非理想特性引起的信號相關(guān)峰畸變,會導致測距偏差,成為偽距測量中不可建模誤差的主要來源。因此,對群時延建模、分析其對高精度測距的影響并研究其測量和校準技術(shù)很有必要。群時延與信號相關(guān)峰畸變關(guān)系密切,目前國內(nèi)外普遍認為群時延只要存在波動就會產(chǎn)生相關(guān)峰畸變,而且特性不一樣的群時延將產(chǎn)生不一樣的相關(guān)峰畸變。但實際中會存在這種情況:兩個特性差異較大的群時延可能產(chǎn)生基本一致的相關(guān)峰畸變,引起的時延估計不一致性很小。針對這一情況,本文提出了等效群時延的定義。該定義可簡化群時延非理想特性對相關(guān)峰畸變影響的分析,并指導群時延測量和校準的設計,在進行群時延測量和校準時,只需要校準后的群時延與理想群時延等效即可。目前,一般通過仿真的方法分析群時延非理想對高精度測量的影響,不具備一般性,且效率較低。本文通過分析群時延非理想造成信號相關(guān)峰畸變的內(nèi)在機理,建立了基于傅立葉級數(shù)分解的群時延通用分析模型,該模型可將任意群時延特性分解為有限階數(shù)的余弦型群時延和正弦型群時延的級聯(lián),余弦型群時延傳輸函數(shù)和正弦型群時延傳輸函數(shù)可分解為有限階數(shù)的線性相位傳輸函數(shù)的疊加,首次給出了群時延非理想與信號相關(guān)峰畸變之間的解析關(guān)系。并由此得出群時延分解的低頻分量是影響信號相關(guān)峰以及測距的主要因素,高頻分量影響比較小甚至可忽略。此模型有助于分析群時延非理想對時延估計的影響,并可指導群時延的測量和校準,在進行群時延測量校準時,只需要校準會導致相關(guān)峰畸變的傅立葉分解項即可。針對傳統(tǒng)群時延測量方法存在的測量精度與測量分辨率無法兼顧的問題,論文提出了基于窄帶擴頻信號的群時延測量方法,該方法可以在任意分辨率下實現(xiàn)群時延的高精度測量,測量精度可達到0.01ns。論文同時給出了該測量方法的參數(shù)優(yōu)化設計方案:早遲相關(guān)間隔越寬,群時延測量系統(tǒng)偏差越小;群時延波動越劇烈,碼率要求越低,對于導航應用中大部分濾波器,采用1.023MHz的碼率即可滿足要求。在論文的仿真實例中,對波動幅度為50ns,波動周期為10.23MHz的余弦型群時延進行測量時,采用1.023MHz的碼率即可達到0.01ns的精度。根據(jù)基于傅立葉級數(shù)分解的群時延通用分析模型,并結(jié)合等效群時延的定義,論文提出了一種等效群時延的高精度測量方法,該方法通過估計群時延的傅立葉分解系數(shù)來實現(xiàn)等效群時延的測量。仿真表明對采用該方法測量得到的群時延進行補償后,信號相關(guān)峰與理想相關(guān)峰的形狀基本一致,由群時延非理想引入的時延估計誤差在0.02ns之內(nèi),可忽略不計。在傳統(tǒng)的群時延校準方法中,模擬域校準一般存在精度與靈活性差的問題;數(shù)字域的頻域校準需要做大數(shù)據(jù)量的FFT和IFFT運算,運算復雜度高;數(shù)字域的時域校準雖然復雜度低,但目前的算法無法得到時域濾波器的解析表達式,因此很難確定階數(shù)并從理論上說明校準性能。論文提出了基于傅立葉級數(shù)模型的群時延校準算法,該算法的時域濾波器存在可解析的表達式,在理論上可以消除群時延非理想對時延估計的影響,且實現(xiàn)效率高,需要的濾波器階數(shù)低。實驗結(jié)果表明僅用13階的FIR濾波器即可消除群時延波動幅度達80ns的中頻濾波器引起的信號相關(guān)峰畸變和時延估計偏差。最后,對本文研究成果進行了總結(jié),論文的主要成果均已在我國自主衛(wèi)星導航系統(tǒng)的建設中得到應用。
[Abstract]:The control section of the ground segment, high precision navigation receiver widely applied to satellite navigation system, the space segment, is a satellite navigation system to complete the synchronous satellite time, core measuring equipment of satellite orbit determination system and other important business, is a foundation to ensure the service performance of navigation system in high precision navigation receiver, signal correlation peak distortion caused by the non ideal characteristics of the channel group delay, will lead to become the main source of ranging bias, pseudorange measurement can not be modeling error. Therefore, the group delay modeling, analysis of its impact on high precision and it is necessary to study the measurement and calibration technology. The group delay and signal correlation peak distortion close relationship at home and abroad generally believe that as long as there are fluctuations in group delay will produce peak distortion and group delay characteristics of different will have a correlation peak distortion is not the same. But in practice there will be this A: two characteristics of different group delay may have correlation peak distortion is substantially uniform, caused by the inconsistency of time delay estimation is very small. In view of this situation, this paper puts forward the definition of equivalent group delay. Analysis of the definition of group delay can simplify the influence of non ideal characteristics of the correlation peak distortion, and guide the design group delay measurement and calibration, the group delay measurement and calibration, only after calibration of the group delay and group delay equivalent to ideal. At present, generally by the method of simulation analysis on the influence of non ideal group delay measurement accuracy, does not have generality, and low efficiency. In this paper, through the analysis of internal mechanism the ideal signal correlation peak distortion caused by non group delay, group delay analysis model based on general Fu Liye series decomposition is established, the model can be arbitrary group delay characteristic is decomposed into finite order cosine type group Cascaded delay and sinusoidal group delay, group delay superposition cosine transfer function and sinusoidal group delay transfer function decomposition of linear phase transfer function is of finite order number, first given group delay non analytical relationship between the ideal and the signal correlation peak distortion. And thus the low frequency component of group delay decomposition is main factors affecting the signal correlation peak and range, high frequency components of relatively small impact or even negligible. This model is helpful to the analysis of non ideal effects on the group delay time delay estimation, and can guide the measurement and calibration of group delay, group delay measurement in the calibration, only need calibration will lead to Fu Liye correlation peak distortion decomposition you can. In the traditional methods of measuring the group delay measurement accuracy and measurement resolution can not take into account the problem, proposed group delay measurement method of narrowband signal based on the spread spectrum. Method can achieve high precision measurement of group delay at any resolution, measurement accuracy can reach 0.01ns. at the same time, given the parameter optimization design of the measurement methods: early late correlation interval is wide, group delay measurement system bias is small; group delay fluctuation is more intense, more low rate code requirements, for most navigation applications in the 1.023MHz rate to meet the requirements. In the simulation example, the volatility is 50ns, 10.23MHz is the cosine wave cycle group delay measurement, the 1.023MHz rate can reach 0.01ns accuracy. According to the analysis model based on universal group delay Fu Liye series decomposition, combined with the definition of equivalent group delay the paper presents a high precision measurement method for equivalent group delay, the method by measuring the Fu Liye group delay decomposition coefficient to achieve equivalent group delay estimation . simulation results show that the compensation of the group delay measured by this method, consistent signal correlation peak and ideal correlation peak shape, by the introduction of non ideal group delay time delay estimation error within 0.02ns, can be neglected. In the traditional group delay calibration method, analog domain calibration accuracy and flexibility are the problem of the poor; frequency domain digital calibration needs to be bigger and the amount of data FFT and IFFT computing, high computational complexity; time domain calibration of the digital domain while the complexity is low, but the current algorithm cannot get an analytical time-domain filter, it is difficult to determine the order and calibration performance in theory is put forward. This paper group time delay calibration algorithm based on Fu Liye series model, the algorithm of time domain filter expressions can be resolved, can eliminate the influence of non ideal group delay time delay estimation in theory, and the realization of High efficiency, low requirement for the order of the filter. The experimental results show that the group delay filter to eliminate the cause of fluctuation of 80ns can only use 13 order FIR filter the signal correlation peak distortion and time delay estimation error. Finally, the research results in this paper are summarized, the main results are in the construction of our own satellite navigation system application.
【學位授予單位】:國防科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN965.5
【相似文獻】
相關(guān)期刊論文 前10條
1 ;《群時延測量技術(shù)學習班》將于11月在成都舉辦[J];電訊技術(shù);1990年05期
2 廖文仲;葉紅英;;群時延測試的原理和方法[J];電子測試;2001年05期
3 耿虎軍;系統(tǒng)群時延特性對偽碼測距影響的研究[J];無線電工程;2004年11期
4 李垣陵;朱祥維;歐鋼;;群時延相位線性回歸測量方法及應用[J];無線電工程;2007年08期
5 朱祥維;李垣陵;雍少為;莊釗文;;群時延的新概念、測量方法及其應用[J];電子學報;2008年09期
6 劉濤;;群時延的快速測量方法[J];電波科學學報;2009年02期
7 田嘉;王偉;史平彥;;群時延對測距誤差的影響[J];空間電子技術(shù);2012年03期
8 楊保泉;;用掃頻相移技術(shù)測量群時延[J];電訊技術(shù);1978年05期
9 孟宣室;相位和群時延測量綜述[J];電訊技術(shù);1980年02期
10 程文相;;群時延及其測量原理[J];通信技術(shù);1981年03期
相關(guān)會議論文 前5條
1 許玉華;;微波中頻群時延檢定裝置及傳遞標準的研究與應用[A];1989年全國微波會議論文集(上)[C];1989年
2 尹仲琪;黃凱冬;胡勇;黃坤超;;最小二乘法對群時延測量的改善[A];2009安捷倫科技節(jié)論文集[C];2009年
3 李紅浪;梁勇;何世堂;;低損耗小群時延波動聲表面波濾波器的研制[A];2007’促進西部發(fā)展聲學學術(shù)交流會論文集[C];2007年
4 李良;蘇濤;姜立偉;底浩;;反射系數(shù)相位與群時延混合法調(diào)諧耦合級聯(lián)帶通濾波器[A];2009年全國微波毫米波會議論文集(上冊)[C];2009年
5 劉博;胡海巖;;濾波器群時延對受控倒立擺穩(wěn)定性的影響[A];第八屆全國動力學與控制學術(shù)會議論文集[C];2008年
相關(guān)博士學位論文 前1條
1 肖志斌;高精度導航接收機的群時延建模、測量和校準技術(shù)[D];國防科學技術(shù)大學;2014年
相關(guān)碩士學位論文 前10條
1 鄧良;負群時延微波電路的研究與設計[D];南京理工大學;2015年
2 許慶東;遙測多徑群時延信道自適應均衡算法研究[D];西安電子科技大學;2014年
3 尚永強;基于修正群時延函數(shù)分子的耳語活動檢測[D];吉林大學;2016年
4 沙海;衛(wèi)星導航系統(tǒng)傳輸信道的群時延測量方法研究與應用[D];國防科學技術(shù)大學;2009年
5 陳蕓蕓;基于軟件無線電技術(shù)的變頻器件群時延測量方法的研究[D];哈爾濱工業(yè)大學;2009年
6 王雷;衛(wèi)星信道群時延特性的均衡技術(shù)研究[D];燕山大學;2012年
7 林婕;變頻系統(tǒng)群時延精密測試方法研究[D];哈爾濱工業(yè)大學;2012年
8 江濤;變頻信道群時延特性研究[D];南京理工大學;2006年
9 胡凡;非協(xié)作數(shù)字通信系統(tǒng)群時延及相位噪聲研究[D];電子科技大學;2010年
10 郭沛;BPF群時延對OFDM接收機性能影響的研究[D];大連理工大學;2007年
,本文編號:1416378
本文鏈接:http://sikaile.net/kejilunwen/wltx/1416378.html