基于噪聲估計(jì)和掩蔽效應(yīng)的語(yǔ)音增強(qiáng)
本文關(guān)鍵詞:基于噪聲估計(jì)和掩蔽效應(yīng)的語(yǔ)音增強(qiáng) 出處:《西南交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 語(yǔ)音增強(qiáng) 噪聲估計(jì) 掩蔽效應(yīng) 諧波恢復(fù) 可懂度
【摘要】:數(shù)字化的語(yǔ)音傳送、控制和識(shí)別是信息社會(huì)的基本組成部分之一。但是語(yǔ)音信號(hào)在獲取和傳送途中,都會(huì)不可避免的受到各類噪聲的干擾,不僅導(dǎo)致接收者聽(tīng)到的語(yǔ)音質(zhì)量下降,還會(huì)影響語(yǔ)音控制系統(tǒng)和識(shí)別系統(tǒng)的正常工作。語(yǔ)音數(shù)字信號(hào)處理技術(shù)已廣泛地發(fā)展到了實(shí)用階段,語(yǔ)音增強(qiáng)技術(shù)則發(fā)展為該階段需要迫切解決的問(wèn)題之一。語(yǔ)音增強(qiáng)的目的是消除噪聲干擾和提高語(yǔ)音可懂度。針對(duì)不同類型的干擾噪聲,要采用不同的語(yǔ)音增強(qiáng)策略,并且力圖在抑制背景噪聲的同時(shí)提高聽(tīng)者的舒適度。 本文研究是建立在語(yǔ)音增強(qiáng)領(lǐng)域眾多學(xué)者的優(yōu)秀研究成果之上的,研究?jī)?nèi)容呈依次遞進(jìn)的關(guān)系,主要內(nèi)容大致概括如下: 1、簡(jiǎn)要闡述了語(yǔ)音增強(qiáng)技術(shù)的基本原理和常用方法,分析了各類噪聲的性質(zhì)和對(duì)語(yǔ)音的污染情況。 2、對(duì)于平穩(wěn)噪聲干擾情況,本文將二次平滑引入語(yǔ)音活動(dòng)檢測(cè)(VAD)算法中進(jìn)行后置處理,改善了VAD法估計(jì)平穩(wěn)噪聲時(shí)出現(xiàn)部分偏差的情況,采用維納濾波來(lái)代替譜減法估計(jì)純凈語(yǔ)音,避免了“音樂(lè)噪聲”的產(chǎn)生。在兼顧了復(fù)雜度和處理效果的情況下,該算法可以準(zhǔn)確的估計(jì)出噪聲并取得較好的增強(qiáng)效果。用多種非平穩(wěn)噪聲對(duì)該改進(jìn)算法進(jìn)行適用性分析,結(jié)果表明該算法更適用于處理平穩(wěn)噪聲。 3、對(duì)于非平穩(wěn)噪聲干擾這一復(fù)雜情況,本文研究分析了數(shù)據(jù)遞歸法(DDR),分別用vuvuzela、babble、train和car噪聲對(duì)該算法進(jìn)行仿真試驗(yàn),驗(yàn)證了該算法處理噪聲污染的有效性,同時(shí)也證實(shí)了本文改進(jìn)的VAD方法對(duì)復(fù)雜度和有效性進(jìn)行了較好的權(quán)衡。發(fā)現(xiàn)了適用于平穩(wěn)噪聲環(huán)境下的增強(qiáng)算法不一定適用于非平穩(wěn)噪聲,但適用于非平穩(wěn)噪聲環(huán)境下的增強(qiáng)算法一定適用于平穩(wěn)噪聲環(huán)境的規(guī)律。DDR算法的有效實(shí)現(xiàn)為后文理想二元掩蔽(IBM)算法的研究提供了支持。 4、提高可懂度是語(yǔ)音增強(qiáng)的重要目的。本文研究分析了能夠提高可懂度的IBM算法和諧波恢復(fù)(HR)算法。IBM算法是在DDR法估計(jì)噪聲方差的基礎(chǔ)上實(shí)現(xiàn)的,仿真結(jié)果驗(yàn)證了該算法提高語(yǔ)音可懂度的有效性。本文采用三級(jí)分頻段處理來(lái)改進(jìn)了HR算法改善了傳統(tǒng)HR法卷積運(yùn)算會(huì)產(chǎn)生頻譜混疊的問(wèn)題。將IBM算法處理后的增強(qiáng)輸出語(yǔ)音作為本文改進(jìn)HR法的輸入信號(hào)進(jìn)行二次增強(qiáng)處理,有效提高了語(yǔ)音可懂度。
[Abstract]:Digital voice transmission, control and identification is one of the basic components of the information society. But the voice signal transmission way in acquiring and will be influenced by noise inevitably, not only lead to the decline of the recipient to hear the speech quality, also affect the normal work of voice control system and recognition system. The technology has been developed to the practical stage processing of digital speech signal, speech enhancement technology development is one of the urgent problems of the stage. The purpose of speech enhancement is to eliminate noise and improve speech intelligibility. Aiming at the noise of different types, with different speech enhancement strategies, and to enhance the comfort level of the listener in noise suppression at the same time.
This research is based on the excellent research results of many scholars in the field of speech enhancement, and the research contents are progressively progressively related. The main contents are summarized as follows.
1, the basic principles and common methods of speech enhancement are briefly described, and the properties of all kinds of noise and the pollution of speech are analyzed.
2, the stationary noise, this paper will introduce the two smooth voice activity detection (VAD) of the post processing algorithm, part of the deviation appears to improve the VAD method to estimate the stationary noise, using Wiener filter instead of spectral subtraction to estimate the clean speech, to avoid the "music noise" produced in the complex. And the treatment effect of the case, the algorithm can accurately estimate the noise and obtain better effects. Using a variety of non-stationary noise on the algorithm applicability analysis, the results show that the algorithm is more suitable for processing non-stationary noise.
3, for the non-stationary noise of this complex situation, this paper analyzes the data of the recursive method (DDR), respectively vuvuzela, babble, train and car noise simulation test to the algorithm, verify the validity of the algorithm to deal with noise pollution, it also proved that the improved VAD method with a good balance on the complexity and effectiveness are found. The enhancement algorithm may not be suitable for non-stationary noise for stationary noise, but is applicable to non-stationary noise environment and enhance the effective implementation of.DDR algorithm is the Yu Pingwen noise environment is the ideal two yuan masking (IBM) algorithm provides support the study.
4, improve the intelligibility of speech enhancement is an important objective. This paper analyzes can improve the intelligibility of the IBM algorithm for harmonic retrieval (HR) algorithm is.IBM algorithm in DDR estimation method based on the variance of the noise, the simulation results show that the algorithm improve the speech intelligibility is effective. The improved HR algorithm to improve the traditional HR method will produce the convolution spectrum aliasing problem using three frequency processing. This paper will enhance the output speech IBM algorithm after processing the input signal as the improved HR method was two times enhancement, effectively improve the speech intelligibility.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN912.35
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 牟海維;張芙蓉;;基于聽(tīng)覺(jué)掩蔽效應(yīng)的多帶譜減語(yǔ)音增強(qiáng)算法[J];大慶石油學(xué)院學(xué)報(bào);2009年05期
2 呂言國(guó);崔慧娟;;基于改進(jìn)諧波恢復(fù)算法的語(yǔ)音增強(qiáng)方法[J];計(jì)算機(jī)工程;2012年04期
3 余建潮;張瑞林;;改進(jìn)增益函數(shù)的MMSE語(yǔ)音增強(qiáng)算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年14期
4 馬建芬;小波變換在語(yǔ)音去噪中的應(yīng)用[J];太原理工大學(xué)學(xué)報(bào);2001年03期
5 陳俊,孫洪,董航;基于MMSE先驗(yàn)信噪比估計(jì)的語(yǔ)音增強(qiáng)[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2005年05期
6 劉曉明,覃勝,劉宗行,江澤佳;語(yǔ)音端點(diǎn)檢測(cè)的仿真研究[J];系統(tǒng)仿真學(xué)報(bào);2005年08期
7 蔡斌,郭英,李宏偉,龔成;一種改進(jìn)型MMSE語(yǔ)音增強(qiáng)方法[J];信號(hào)處理;2004年01期
8 譚曉衡;許可;秦基偉;;基于聽(tīng)覺(jué)感知特性的語(yǔ)音質(zhì)量客觀評(píng)價(jià)方法[J];西南交通大學(xué)學(xué)報(bào);2013年04期
,本文編號(hào):1401103
本文鏈接:http://sikaile.net/kejilunwen/wltx/1401103.html