用無截?cái)喾椒ㄓ?jì)算靜態(tài)和動(dòng)態(tài)黑洞統(tǒng)計(jì)熵
[Abstract]:Since the concept of black hole was put forward, the study of black hole and black hole entropy has been paid more and more attention by physicists. For many years, theoretical researchers have focused on the nature of black holes and the statistical origin of black hole entropy. In this paper, the statistical entropy of static and dynamic black holes is calculated by means of no truncation method. In the first chapter, the thermodynamic law of black hole and the basic concept of black hole entropy are briefly introduced. The thermal effect of static black hole and the determination of event horizon of static black hole are introduced respectively. The basic mechanics law of dynamic black hole, the thermal effect of dynamic black hole and the definition of event horizon of dynamic black hole are also introduced. In chapter 2, two models for calculating black hole entropy, brick wall model and thin layer model, are introduced, and the shortcomings of the two models are pointed out. The "brick wall model" can only be applied to static and steady black holes, and the "thin layer model" can be used to calculate the entropy of all kinds of static and dynamic black holes. But both need to be truncated. In chapter 3, the statistical entropy of static and dynamic black holes is calculated by using the untruncated method. Firstly, the generalized uncertainty relation between position and momentum is introduced, and the corresponding microcosmic state density equation is modified. The quantum state number of the matter field outside the black hole obtained by the exponential modified state density equation is convergent at the horizon. Finally, the statistical mechanical entropy of static G-H-S black hole, dynamic Vaidya black hole, dynamic Vaidya-de Sitter black hole and dynamic Vaidya-Bonner black hole is calculated by exponentially modified density of states equation, and no truncation is required. By comparing the statistical entropy of the dynamic black hole with the statistical entropy of the static black hole, it can be seen that the statistical entropy of the dynamic black hole is a correction factor related to the change rate of the event horizon compared with the corresponding statistical entropy of the static black hole.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:P145.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高長軍,趙崢;用膜模型計(jì)算Schwarzschild -de Sitter黑洞的熵[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年03期
2 景玲,周宙安,劉文彪;測不準(zhǔn)關(guān)系與Schwarzschild-de Sitter黑洞熵[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年05期
3 牛振風(fēng),李翔,趙崢;利用廣義不確定關(guān)系計(jì)算Vaidya-de Sitter黑洞的熵[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年06期
4 劉成周,周宙安,李翔,趙崢;廣義不確定原理對一般靜態(tài)黑洞熵的影響[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期
5 張子珍;張麗春;趙仁;;柱黑洞的熵[J];數(shù)學(xué)物理學(xué)報(bào);2005年S1期
6 張鎮(zhèn)九;黑洞物理[J];天文學(xué)進(jìn)展;1984年04期
7 羅志強(qiáng),趙崢;變加速直線運(yùn)動(dòng)黑洞的量子熱效應(yīng)[J];物理學(xué)報(bào);1993年03期
8 宋太平,姚國政;一般球?qū)ΨQ帶電蒸發(fā)黑洞的溫度[J];物理學(xué)報(bào);2002年05期
9 張靖儀,趙崢;直線加速動(dòng)態(tài)黑洞Dirac場的熵[J];物理學(xué)報(bào);2002年10期
10 朱斌,姚國政,趙崢;帶有電荷與磁荷的直線加速動(dòng)態(tài)黑洞的熵[J];物理學(xué)報(bào);2002年11期
本文編號:2264241
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2264241.html