基于時(shí)域法的月球衛(wèi)星引力梯度測(cè)量恢復(fù)方法研究
[Abstract]:Lunar gravitational field is the basic physical feature of the moon and plays an important role in lunar exploration. The determination of high-precision lunar gravitational field is of great significance to further demonstrate the origin of the moon, orbit around the moon and the location of lunar landing. With the successful launch of SELENE and GRAIL satellites, the world began a new wave of lunar gravitational field exploration. Based on the gravity gradient measurement technique of lunar satellite, this paper studies the theory, method and calculation example of recovering the gravitational field of the moon by using the gravity gradient measurement data of lunar satellite. The first part of this paper mainly introduces the background and significance of lunar gravitational field exploration. In the second part, the theory and method of recovering lunar gravitational field by gravity gradient measurement data are studied, including spatial least square method and time-frequency domain method to solve the principle and mathematical model of lunar gravitational field. In the third part, based on the least square error analysis method in time domain, the formula for calculating the error of lunar gravitational field model is derived, and the block diagonality of the normal equation matrix is analyzed based on the time-domain method. Based on the least square error analysis method in time domain, the effects of satellite gradiometer precision, satellite orbit altitude, sampling period and sampling interval on the accuracy of lunar gravitational field recovery are analyzed and discussed. The optimal scheme of gradient measurement is given: the measuring accuracy of gradiometer is 10mE / Hz1 / 2, the orbit height is 50km, the sampling period is 28 days and the sampling interval is 5s. This scheme can finally restore 335th order lunar gravitational field with a spatial resolution of 14km. The accumulative errors of gravity anomaly and lunar geoid are 1.42mGal and 6.77cm respectively at 250th order. In the fourth part, the satellite orbit and gradient Zhang Liang Vzz data are simulated and calculated with the reference of the optimal scheme. The preconditioned conjugate gradient method is used to recover the 100th order lunar gravitational field. The feasibility of recovering the lunar gravitational field by time domain method is verified.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:P184
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 鄒正波;羅志才;邢樂林;吳云龍;李輝;;衛(wèi)星重力梯度恢復(fù)地球重力場(chǎng)的時(shí)域法研究[J];大地測(cè)量與地球動(dòng)力學(xué);2007年03期
2 蔡林;周澤兵;祝竺;高防;許厚澤;;衛(wèi)星重力梯度恢復(fù)地球重力場(chǎng)的頻譜分析[J];地球物理學(xué)報(bào);2012年05期
3 歐陽自遠(yuǎn);我國月球探測(cè)的總體科學(xué)目標(biāo)與發(fā)展戰(zhàn)略[J];地球科學(xué)進(jìn)展;2004年03期
4 鄭永春;;“月女神”探測(cè)器揭開日本月球探測(cè)的新篇章[J];國際太空;2007年11期
5 祝竺;周澤兵;;用于衛(wèi)星重力梯度測(cè)量的加速度計(jì)性能參數(shù)分析[J];大地測(cè)量與地球動(dòng)力學(xué);2012年05期
6 士元;;日本“月亮女神”空間探測(cè)器9月奔月[J];數(shù)字通信世界;2007年11期
7 劉睿;周軍;劉瑩瑩;;高階次月球重力場(chǎng)模型截?cái)嘞碌牡蛙壄h(huán)月衛(wèi)星軌道受攝分析[J];宇航學(xué)報(bào);2009年02期
相關(guān)博士學(xué)位論文 前1條
1 鐘波;基于GOCE衛(wèi)星重力測(cè)量技術(shù)確定地球重力場(chǎng)的研究[D];武漢大學(xué);2010年
本文編號(hào):2190063
本文鏈接:http://sikaile.net/kejilunwen/tianwen/2190063.html