基于電導(dǎo)率模型的月幔水含量估算研究
本文關(guān)鍵詞:基于電導(dǎo)率模型的月幔水含量估算研究 出處:《中國(guó)地質(zhì)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 高溫高壓 電導(dǎo)率 月幔 水 模型
【摘要】:月球蘊(yùn)藏著豐富的能源和礦產(chǎn)資源,能源和資源能否被充分利用與月球存在的水環(huán)境密切相關(guān)。月球上水資源的存在和被利用在月球探測(cè)計(jì)劃中具有非常重要的科學(xué)研究?jī)r(jià)值和應(yīng)用前景。最新研究采用新的化學(xué)分析技術(shù)重新分析阿波羅月球樣品中的火山玻璃珠、橄欖石熔融包裹體,磷灰石和高地斜長(zhǎng)巖,均檢測(cè)到大量水的存在,暗示月球內(nèi)部某些區(qū)域可能包含和地球地幔相同的水含量。由于礦物巖石的電導(dǎo)率對(duì)于水含量非常敏感,理論和實(shí)驗(yàn)研究都已經(jīng)證實(shí)水能夠極大增加礦物巖石的電導(dǎo)率。最近六年,在實(shí)驗(yàn)室高溫高壓條件下測(cè)量礦物巖石的電導(dǎo)率已經(jīng)成為深部地質(zhì)-地球物理領(lǐng)域的一個(gè)研究熱點(diǎn),而將實(shí)驗(yàn)室高溫高壓條件下獲得礦物巖石的電導(dǎo)率和大地電磁探測(cè)和地磁測(cè)深的結(jié)果相結(jié)合,已經(jīng)成為推斷地球內(nèi)部水含量的一種有效途徑。 目前月球內(nèi)部含水的有關(guān)證據(jù)主要來自地球化學(xué)方法,而僅僅利用阿波羅時(shí)期月球表面采集的樣品推斷月球內(nèi)部水含量將具有較大不確定性。本文嘗試將實(shí)驗(yàn)室高溫高壓條件下獲得下地殼、上地幔主要礦物組成橄欖石、輝石和石榴子石的電導(dǎo)率與月而磁力儀獲得的典型月球電導(dǎo)率-深度剖面結(jié)合用于推斷月幔的水含量。論文的主要內(nèi)容包括以下幾個(gè)方面: (1)回顧月球含水研究現(xiàn)狀和概述實(shí)驗(yàn)室高溫高壓條件下礦物巖石電導(dǎo)率的研究現(xiàn)狀。 (2)將影響實(shí)驗(yàn)室高溫高壓條件下礦物巖石電導(dǎo)率的因素劃分為外部因素和內(nèi)部因素,綜述這些因素對(duì)地幔礦物巖石電導(dǎo)率的影響程度。地幔礦物巖石的電導(dǎo)率分別隨著溫度,鐵含量,水含量和熔融熔體體積分?jǐn)?shù)的增加而增加;不含水條件下,電導(dǎo)率隨著氧逸度和壓力的增加而分別增加和減小,含水條件下則恰恰相反;忽略顆粒邊界對(duì)電導(dǎo)率的影響;測(cè)量頻率和結(jié)晶方向?qū)﹄妼?dǎo)率的影響尚存在一定爭(zhēng)議;在進(jìn)行電導(dǎo)率測(cè)量時(shí)有必要考慮系統(tǒng)平衡時(shí)間和樣品中的鐵損失。 (3)回顧月幔內(nèi)部結(jié)構(gòu)、物質(zhì)成分和實(shí)驗(yàn)室高溫高壓條件下地殼、上地幔主要礦物組成橄欖石、斜方輝石、單斜輝石和石榴子石在含水和不含水條件下的電導(dǎo)率數(shù)據(jù)。 (4)推導(dǎo)適用月幔溫度、壓力、氧逸度條件具有相似整體化學(xué)成分和礦物組成含水和不含水電導(dǎo)率模型,采用有效介質(zhì)平均方法計(jì)算月幔礦物組成平均電導(dǎo)率與溫度、水含量的函數(shù)關(guān)系,聯(lián)合月面磁力儀獲得的典型月球電導(dǎo)率-深度剖面計(jì)算具不同總水含量的月幔溫度-深度曲線,與來自月球重力和月震數(shù)據(jù)推斷的溫度范圍進(jìn)行對(duì)比,推斷月幔的總水含量小于10ppm,這和關(guān)于月球起源的“大撞擊說”假說,近期對(duì)于月球巖漿海巖石學(xué)建模和月球樣品氯同位素分析結(jié)果符合。 (5)總結(jié)和歸納全文主要研究成果,指出本文研究工作不足之處以及未來改進(jìn)方向。
[Abstract]:The moon is rich in energy and mineral resources. Whether energy and resources can be fully utilized is closely related to the water environment of the Moon. The existence and utilization of water resources on the Moon has very important scientific research value and application prospect in the lunar exploration program. A new chemical analysis technique was used to reanalyze the volcanic glass beads in Apollo lunar samples. A large amount of water was detected in olivine melt inclusions, apatite and highland plagioclase. It suggests that some areas of the moon may contain the same amount of water as the Earth's mantle. The conductivity of mineral rocks is very sensitive to water content. Both theoretical and experimental studies have shown that water can greatly increase the electrical conductivity of mineral rocks. Measuring the conductivity of mineral rocks under high temperature and high pressure in laboratory has become a research hotspot in the field of deep geology and geophysics. Combining the conductivity of mineral rocks with magnetotelluric sounding and geomagnetic sounding under the conditions of high temperature and high pressure in laboratory has become an effective way to infer the water content in the earth's interior. At present, the evidence of water content in the interior of the moon mainly comes from geochemical methods. However, it is uncertain to infer the water content of the lunar interior only from the samples collected from the lunar surface during the Apollo period. In this paper, we try to obtain the lower crust under the conditions of high temperature and high pressure in the laboratory. The main minerals in the upper mantle are olivine. The conductivity of pyroxene and pomegranate is combined with the typical lunar conductivity depth profile obtained by the lunar magnetometer to infer the water content of the lunar mantle. The main contents of this paper are as follows: 1) the present situation of research on water content in the moon and the electrical conductivity of mineral rocks under high temperature and high pressure in laboratory are reviewed. 2) the factors affecting the conductivity of mineral rocks under high temperature and high pressure in laboratory are divided into external factors and internal factors. The influence of these factors on the conductivity of mantle mineral rocks is summarized. The conductivity of mantle mineral rocks increases with the increase of temperature, iron content, water content and melt volume fraction, respectively. The conductivity increases and decreases with the increase of oxygen fugacity and pressure under the condition of no water content, but the opposite is true under the condition of water content. The influence of particle boundary on conductivity is ignored. The influence of measuring frequency and crystallization direction on conductivity is still controversial. It is necessary to consider the equilibrium time of the system and the iron loss in the sample when conducting the conductivity measurement. The main minerals in the upper mantle consist of olivine and clinopyroxene. Conductivity data of clinopyroxene and pomegranate in and without water. 4) the model is applicable to the temperature, pressure and oxygen fugacity of the moon mantle with similar chemical composition and mineral composition of water and no water conductivity model. The effective medium average method is used to calculate the functional relationship between the average conductivity of the mineral composition of the lunar mantle and the temperature and water content. The typical lunar conductivity depth profile obtained by the lunar magnetometer is used to calculate the temperature depth curves of the mantle with different total water contents, which is compared with the temperature range inferred from the lunar gravity and lunar earthquake data. It is inferred that the total water content of the lunar mantle is less than 10 ppm, which is consistent with the "big impact theory" hypothesis about the origin of the moon, and the recent petrological modeling of the lunar magmatic sea and the chlorine isotope analysis of the lunar sample. 5) summarizing and summarizing the main research results, pointing out the shortcomings of the research work and the direction of improvement in the future.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P184
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 黃小剛;黃曉葛;白武明;;高溫高壓下礦物巖石電導(dǎo)率的實(shí)驗(yàn)研究進(jìn)展[J];地球物理學(xué)進(jìn)展;2010年04期
2 徐有生;地幔礦物巖石的電導(dǎo)率研究進(jìn)展[J];地學(xué)前緣;2000年01期
3 王多君;馬瑾;楊曉松;周平;;地幔礦物電導(dǎo)率研究進(jìn)展[J];地震地質(zhì);2007年01期
4 ;Experimental Study on the Electrical Conductivity of Orthopyroxene atHigh Temperature and High Pressure under Different Oxygen Fugacities[J];Acta Geologica Sinica(English Edition);2005年06期
5 彭偉;黃曉葛;白武明;;上地幔低速高導(dǎo)層成因的探討-水和熔體的作用[J];地球物理學(xué)進(jìn)展;2012年05期
6 胡智新;;月球表面水冰探測(cè)進(jìn)展[J];航天器工程;2010年05期
7 劉揚(yáng);Lawrence A TAYLOR;;月球上的“水”[J];巖石學(xué)報(bào);2011年02期
8 ;Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities[J];Progress in Natural Science;2006年04期
9 楊曉志;;上地幔頂部電導(dǎo)率異常的起因[J];巖石礦物學(xué)雜志;2013年05期
,本文編號(hào):1421698
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1421698.html