黑洞對(duì)電磁輻射傳播所產(chǎn)生的觀測(cè)效應(yīng)
發(fā)布時(shí)間:2018-01-13 03:01
本文關(guān)鍵詞:黑洞對(duì)電磁輻射傳播所產(chǎn)生的觀測(cè)效應(yīng) 出處:《南京大學(xué)》2011年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 黑洞 脈沖星 吸積盤(pán) 強(qiáng)引力場(chǎng)
【摘要】:愛(ài)因斯坦于1915年完成了廣義相對(duì)論,它統(tǒng)一了狹義相對(duì)論和牛頓的萬(wàn)有引力理論。作為引力的幾何理論,廣義相對(duì)論把引力描述為時(shí)空的彎曲。大約從二十世紀(jì)六十年代初開(kāi)始,廣義相對(duì)論已經(jīng)在太陽(yáng)系的弱引力場(chǎng)環(huán)境下被許多的實(shí)驗(yàn)所檢驗(yàn)。而強(qiáng)引力場(chǎng)總是伴隨著致密的星體,比如說(shuō)黑洞或者中子星。1979年,Hulse和Taylor發(fā)現(xiàn)脈沖雙星PSR B1913+16(由一對(duì)中子星組成,其中之一是脈沖星)軌道周期的衰減率與廣義相對(duì)論預(yù)言的由引力波釋放能量導(dǎo)致的軌道衰減率吻合。這個(gè)發(fā)現(xiàn)為引力波的存在提供了一個(gè)間接的證據(jù)。盡管廣義相對(duì)論已經(jīng)被一系列的實(shí)驗(yàn)所證實(shí),但是它還沒(méi)有在強(qiáng)場(chǎng)的條件下被高精度的檢驗(yàn)過(guò)。其中的主要困難之一是強(qiáng)場(chǎng)的效應(yīng)總是被來(lái)自天體物理系統(tǒng)中復(fù)雜和不確定的非引力場(chǎng)效應(yīng)所污染。相比較而言,在太陽(yáng)系的檢驗(yàn)中,弱場(chǎng)的效應(yīng)在大多數(shù)的情況下可以與非引力場(chǎng)的效應(yīng)分離。盡管如此,隨著理論和實(shí)驗(yàn)方法的進(jìn)步,越來(lái)越多的強(qiáng)場(chǎng)效應(yīng)的觀測(cè)方面開(kāi)始被研究。本論文的目的是研究黑洞引力場(chǎng)所產(chǎn)生的觀測(cè)效應(yīng),主要包括兩個(gè)不同的天體物理系統(tǒng)。第一個(gè)系統(tǒng)包含一個(gè)超大質(zhì)量黑洞和一個(gè)脈沖星,當(dāng)脈沖星的脈沖信號(hào)經(jīng)過(guò)超大質(zhì)量黑洞附近時(shí),強(qiáng)引力場(chǎng)將會(huì)對(duì)其到達(dá)時(shí)間和強(qiáng)度產(chǎn)生影響(第2和第3章)。第二個(gè)系統(tǒng)包含一個(gè)恒星質(zhì)量或者超大質(zhì)量的黑洞以及一個(gè)環(huán)繞其運(yùn)動(dòng)的扭曲的吸積盤(pán)。黑洞的強(qiáng)引力場(chǎng)和自旋將會(huì)對(duì)吸積盤(pán)上產(chǎn)生的發(fā)射線的輪廓產(chǎn)生影響(第4章)。 為了條理清晰起見(jiàn),本論文劃分為5章。第一章是對(duì)本論文的研究中涉及到的理論背景知識(shí)作一個(gè)簡(jiǎn)要的介紹,主要包括廣義相對(duì)論、中子星、黑洞及其吸積盤(pán)和彎曲時(shí)空中粒子和光子的運(yùn)動(dòng)。 在第二章中,我們考慮了一個(gè)脈沖星圍繞超大質(zhì)量黑洞旋轉(zhuǎn)的系統(tǒng),進(jìn)而我們研究了當(dāng)脈沖星的脈沖信號(hào)經(jīng)過(guò)超大質(zhì)量黑洞附近時(shí)強(qiáng)引力場(chǎng)對(duì)其強(qiáng)度和計(jì)時(shí)所產(chǎn)生影響。對(duì)于黑洞的自旋可以被忽略的情況,我們證明了所有的強(qiáng)場(chǎng)對(duì)脈沖束的影響可以通過(guò)兩個(gè)“通用函數(shù)”來(lái)理解。其中一個(gè)函數(shù)是用來(lái)計(jì)算光子軌跡的偏折,另一個(gè)是用來(lái)計(jì)算光子在這條軌跡上運(yùn)動(dòng)所需的時(shí)間。我們稱這兩個(gè)函數(shù)是通用的是因?yàn)樗鼈冎灰蕾囉谝粋(gè)參數(shù),也就是脈沖信號(hào)發(fā)射時(shí)脈沖星與黑洞的距離。作為例子,我們把這個(gè)方法應(yīng)用到一個(gè)在圓軌道上運(yùn)動(dòng)并且把其脈沖輻射發(fā)射在軌道平面內(nèi)的脈沖星。除了通過(guò)大致直接的軌道到達(dá)觀測(cè)者的主脈沖外,我們發(fā)現(xiàn)了二級(jí)和更高級(jí)的脈沖。一般而言,它們會(huì)比主脈沖微弱很多,但是當(dāng)它們?cè)诿}沖星處于黑洞最遠(yuǎn)端處被發(fā)射時(shí),它們的強(qiáng)度就有可能可比于甚至超過(guò)主脈沖。我們的結(jié)果顯示主脈沖和二級(jí)脈沖之間存在相位的關(guān)系,這可以用來(lái)作為強(qiáng)彎曲時(shí)空幾何的探針。 類(lèi)似的現(xiàn)象也會(huì)出現(xiàn)在更一般的構(gòu)型中,比如一個(gè)圍繞黑洞旋轉(zhuǎn)的脈沖星把脈沖輻射發(fā)射到軌道平面外的任意方向。在第三章中,我們把“通用函數(shù)”方法應(yīng)用到了更加一般的脈沖星-黑洞-觀測(cè)者的幾何位型中,其中脈沖星自旋軸的方向,脈沖束的輻射方向和張角寬度都是任意的。我們證明對(duì)于這類(lèi)系統(tǒng),觀測(cè)問(wèn)題的分析可以分解為兩個(gè)不同的部分:(i)依賴于觀測(cè)者的“鎖孔”(也就是觀測(cè)者可以接受到信號(hào)的脈沖發(fā)射方向)的位置和軌跡的計(jì)算;(ii)對(duì)代表包含發(fā)射束能量方向的環(huán)帶的判定。每個(gè)部分的例子與對(duì)應(yīng)的一個(gè)具體的觀測(cè)實(shí)例都在本章中一并給出。 在第四章中,我們考慮一個(gè)扭曲的吸積盤(pán)環(huán)繞著Kerr黑洞旋轉(zhuǎn)的系統(tǒng)。如果這個(gè)吸積盤(pán)被來(lái)自盤(pán)冕中的非熱的硬X射線所照射,那么由于熒光機(jī)制,鐵的發(fā)射線將會(huì)從吸積盤(pán)的內(nèi)區(qū)產(chǎn)生。發(fā)射線的輪廓表現(xiàn)出各種各樣的由于強(qiáng)引力場(chǎng)所產(chǎn)生的觀測(cè)特征,因此它可以用來(lái)探測(cè)Kerr黑洞的自旋參數(shù)以及扭曲的吸積盤(pán)的結(jié)構(gòu)。這里我們推廣了之前的相對(duì)論鐵線輪廓的模型,同時(shí)包含了黑洞的自旋效應(yīng)以及扭曲的吸積盤(pán)的非軸對(duì)稱性。我們的計(jì)算顯示了一些與傳統(tǒng)上對(duì)于平坦的吸積盤(pán)圍繞Kerr黑洞和扭曲的吸積盤(pán)圍繞Schwarzschild黑洞的計(jì)算不同的特征。這主要包括了譜線的多峰結(jié)構(gòu),紅端很長(zhǎng)的線翼,以及譜線輪廓隨著盤(pán)進(jìn)動(dòng)所產(chǎn)生的時(shí)變等等。同時(shí)我們也展示了遙遠(yuǎn)觀測(cè)者可能會(huì)看到的由于強(qiáng)場(chǎng)所導(dǎo)致的畸變的吸積盤(pán)的圖像。這里的計(jì)算是具有一般性的,可以應(yīng)用于任何來(lái)自扭曲的吸積盤(pán)的發(fā)射線。 在第五章中,我們總結(jié)了在這篇論文中涉及到的黑洞對(duì)電磁輻射傳播所產(chǎn)生的觀測(cè)效應(yīng),并且對(duì)我們今后可能進(jìn)行的強(qiáng)場(chǎng)效應(yīng)方面的研究作了展望。
[Abstract]:In 1915 Einstein completed the general theory of relativity, it unifies special relativity and Newton's theory of gravitation. As the geometric theory of gravity, general relativity describes gravity as space-time bending. About from the beginning of 1960s, general relativity has weak gravitational field environment in the solar system is tested by many experiments while strong gravitational field is always accompanied by compact objects such as black holes or neutron stars in.1979, Hulse and Taylor found that PSR B1913+16 (binary pulsar, a neutron star of one of them is Mai Chongxing) the decay rate of track cycle and general relativity prediction of gravitational wave energy caused by orbital decay rate well. This discovery provides an indirect evidence for the existence of gravitational waves. Although general relativity has been confirmed by a series of experiments, but it is not in the strong field Test conditions are of high precision. One of the main problems which is the strong field effects are from astrophysical systems in complex and uncertain non gravitational effects of pollution. In comparison, in the inspection of the solar system, weak field effects in most cases with the separation of non gravitational effect field. However, with the advances of theoretical and experimental methods, observational aspects of strong field effects in increasing numbers are beginning to be studied. The purpose of this paper is the observation effect on black hole gravitational field, including two different celestial physics system. The first system contains a supermassive black hole and a the pulsar, when the pulsar pulse signal passed close to the supermassive black hole, the strong gravitational field will be the arrival time and the impact strength (second and third). The second system contains a stellar mass or Zhe Chao A massive black hole and a twisted accretion disk that surround its motion. The strong gravitational field and spin of black holes will have an impact on the contour of the emission line generated on the accretion disk (the fourth chapter).
For the sake of clarity, this paper is divided into 5 chapters. The first chapter is a brief introduction to the theoretical background knowledge involved in this study, including general relativity, neutron stars, black holes and their accretion disks, and the motion of particles and photons in curved spacetime.
In the second chapter, we consider a pulsar around the supermassive black hole rotation system, and then we study when the pulsar pulse signal passed close to the supermassive black hole strong gravitational field influence on the intensity and timing. For the spin of the black hole can be neglected, we prove that all the strong field effects on the pulsar beam can be understood by the two "general function". One function is used to calculate the deflection of photon trajectories, the other one is used to calculate the motion of photons in this track on the time required. We call these two functions are general because they only depend on a parameter, which is the distance from the pulse signal is emitted pulsars and black holes. As an example, we apply this method to a motion in circular orbit and its pulses into the orbital plane of the pulsar. In addition to the main pulse by roughly direct track to the observer, we found two grade and higher pulse. In general, they are much dimmer than the primary pulses, but when they are in the black hole at the far end is launched in the pulsar, their strength might be comparable to or even more than the main pulse. The main pulse and two pulse phase between the relationship of our results show that it can be used as a strong curved spacetime geometry of the probe.
A similar phenomenon will appear in more general configurations, such as a black hole around the pulsar rotation of the arbitrary pulse radiation is emitted into the orbit plane. In the third chapter, we put the "universal function" method to the observer general pulsar black hole - geometry. The star spin axis direction and the pulse, pulse beam radiation direction and angular width is arbitrary. We prove that for this kind of system, the observation and analysis of the problem can be decomposed into two different parts: (I) an observer dependent "keyhole" (that is, the observer can receive pulse transmitting direction signal calculate the position and track); (II) judgment on behalf of ring containing beam energy direction. A concrete example of each part of the observed examples and the corresponding are given in this chapter.
In the fourth chapter, we consider a warped Accretion Disc around a rotating black hole Kerr system. If the hard X ray non thermal accretion disk from the disk corona by irradiation, so the fluorescence mechanism, iron lines will be emitted from the inner region of the accretion disc. The emission line profile performance produced due to the strong gravitational field observations of a variety of characteristics, so it can be used to detect the Kerr black hole spin parameters and the structure of the accretion disk. Here we generalize the previous relativistic line profile model, including the black hole spin effect of the accretion disk and the asymmetry of the US. The calculation shows that some traditional for a flat disk Accretion Disc around a Kerr black hole and twisted around the Schwarzschild black hole calculation of different characteristics. It mainly includes the multi peak structure of spectral line, the red end is very long The wing of the line, and the line profiles with disk precession generated by the variable and so on. At the same time we also show a distant observer may see the result due to the strong place of distortion of the accretion disc image. The calculation is general and can be applied to any from the accretion disk emission lines.
In the fifth chapter, we summarize the observational effects of black holes on electromagnetic radiation propagation in this paper, and make a prospect for our future research on strong field effect.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:P162
【共引文獻(xiàn)】
相關(guān)期刊論文 前1條
1 唐孟希,李芳昱,趙鵬飛,唐敏然;引力波、引力波源和引力波探測(cè)實(shí)驗(yàn)[J];云南天文臺(tái)臺(tái)刊;2002年03期
,本文編號(hào):1417141
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1417141.html
最近更新
教材專著