f(R)引力中黑洞的擬正則模
發(fā)布時間:2018-01-07 01:23
本文關(guān)鍵詞:f(R)引力中黑洞的擬正則模 出處:《上海師范大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 黑洞 f(R)引力 擬正則模 WKB法 連分數(shù)法 單值法
【摘要】:本文研究f(R)引力中靜態(tài)球?qū)ΨQ黑洞解及其擬正則模。黑洞的擬正則�?梢苑从澈诙丛谑艿酵饨鐢_動后振蕩的性質(zhì)。因為f(R)引力的場方程是一個含四階導(dǎo)數(shù)的方程,為了得到一個唯一的解,需要取定更多的積分常數(shù),這導(dǎo)致了外部的時空幾何不光由星體的質(zhì)量描述。本文著重計算對于反常紅移為非零常數(shù)的黑洞以及克利夫頓-巴羅黑洞的擬正則模頻率。在計算擬正則模時主要運用WKB法,連分數(shù)法,以及單值法。其中的單值法可以用來研究快速衰減的擬正則模。連分數(shù)法能較為精確地計算擬正則模。經(jīng)計算發(fā)現(xiàn),對于反常紅移為非零常數(shù)的黑洞,其擬正則模頻率較史瓦西黑洞的擬正則模頻率變慢,,衰減變小。而對于克利夫頓-巴羅黑洞,本文用WKB法和連分數(shù)法計算得出擬正則模頻率的衰減基本不變,振蕩變快。同時,我們也給出利用單值法求出的高度衰減的擬正則模頻率的關(guān)系式。
[Abstract]:This paper studies the f (R) gravity in static spherically symmetric black hole solutions and quasi normal modes. Quasi normal modes can reflect the nature of the black hole under oscillating disturbance after the black hole. Because f (R) is a gravitational field equation with four order derivative equations, in order to obtain a unique solution to take the integral constant more, which leads to the external spacetime geometry not only by star quality description. In this paper, calculation of quasinormal mode frequency for abnormal redshift is a nonzero constant of the black hole and Clifton barrow of the black hole. The main use of WKB method in the calculation of quasi normal modes, the continued fraction method and single value method single value method can be used to study the fast decay of the quasi normal modes. The continued fraction method can accurately calculate the quasi normal modes. The calculation shows that the anomalous redshift is non-zero constant for the black hole, the quasinormal mode frequency is quasi Schwarzschild black hole is die The frequency becomes slower and the attenuation becomes smaller. For the Clifton Barlow black hole, we use the WKB method and continued fraction method to calculate the decay of quasi regular mode frequency.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:P145.8
【參考文獻】
相關(guān)博士學(xué)位論文 前1條
1 陳松柏;黑洞時空中的似正規(guī)模和冪率拖尾[D];湖南師范大學(xué);2006年
本文編號:1390381
本文鏈接:http://sikaile.net/kejilunwen/tianwen/1390381.html
教材專著