天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 天文學(xué)論文 >

光學(xué)多孔徑成像系統(tǒng)成像性能研究

發(fā)布時(shí)間:2018-01-05 16:14

  本文關(guān)鍵詞:光學(xué)多孔徑成像系統(tǒng)成像性能研究 出處:《北京工業(yè)大學(xué)》2013年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 光學(xué)多孔徑成像系統(tǒng) 大氣湍流 共相誤差 波前探測(cè)


【摘要】:隨著人們對(duì)外層空間的深入探索,擔(dān)負(fù)探索任務(wù)的天文望遠(yuǎn)鏡性能成為影響觀測(cè)結(jié)果的重要因素。為了對(duì)更加遙遠(yuǎn)的天文目標(biāo)進(jìn)行觀測(cè),人們對(duì)天文望遠(yuǎn)鏡的角分辨率提出了越來越高的要求。對(duì)于天文望遠(yuǎn)鏡角分辨率的高要求必然導(dǎo)致天文望遠(yuǎn)鏡的口徑尺寸增大,對(duì)于反射式天文望遠(yuǎn)鏡,這意味著需要制造超大尺寸的單鏡面反射鏡。對(duì)于超大尺寸單鏡面反射鏡,由于重量過大,鏡面易形變,所以反射鏡表面曲率半徑的精度難以保證。另外,超大尺寸反射鏡曲率半徑檢測(cè)方法也比較復(fù)雜。這些問題都會(huì)導(dǎo)致天文望遠(yuǎn)鏡制造成本飛速增長。因此迫切需要提出新的方法,解決角高分辨率成像需求與制造困難之間的矛盾。光學(xué)多孔徑成像系統(tǒng)既可以實(shí)現(xiàn)高角分辨率成像,又避免了制造超大單口徑望遠(yuǎn)鏡。 光學(xué)多孔徑成像系統(tǒng)的靈感來源于合成孔徑雷達(dá)成像,利用若干較小口徑的子望遠(yuǎn)鏡收集遙遠(yuǎn)物體發(fā)出的光束。子望遠(yuǎn)鏡按照一定形式排布,形成陣列,其收集的光束共同進(jìn)入成像部分,相互干涉,共同成像。由于光學(xué)多孔徑成像系統(tǒng)能夠一次成像,因此非常適合觀測(cè)快速變化的目標(biāo),例如超新星爆炸,外層空間的飛行器和衛(wèi)星監(jiān)測(cè)等,也可以在外層空間軌道實(shí)現(xiàn)對(duì)地面的高分辨率偵查,具有廣闊的應(yīng)用前景。目前,國內(nèi)外關(guān)于光學(xué)多孔徑成像系統(tǒng)的研究依然非;钴S。 本文主要在三個(gè)方面闡述提高光學(xué)多孔徑成像系統(tǒng)成像性能的方法,包括含噪聲點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)對(duì)復(fù)原圖像質(zhì)量的影響,大氣湍流對(duì)光學(xué)多孔徑成像系統(tǒng)性能的影響,以及共相誤差對(duì)成像性能的影響。通過一系列的理論分析,數(shù)值仿真以及光學(xué)實(shí)驗(yàn),獲得了大量的實(shí)驗(yàn)數(shù)據(jù),得到了一些提高光學(xué)多孔徑成像系統(tǒng)性能的方法。本文主要完成了如下的工作內(nèi)容: 1.研究了光學(xué)多孔徑成像系統(tǒng)的成像過程,物理模型和數(shù)學(xué)模型。分析并得到了由光學(xué)多孔徑成像系統(tǒng)的陣列排布形式獲得出瞳函數(shù)的方法,推導(dǎo)了利用光學(xué)多孔徑成像系統(tǒng)的出瞳函數(shù)計(jì)算點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)的方法,研究了三者之間采樣間隔的關(guān)系。對(duì)光學(xué)多孔徑成像系統(tǒng)的出瞳函數(shù)在自由空間的傳播進(jìn)行了研究,獲得了一種計(jì)算光學(xué)多孔徑成像系統(tǒng)點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)的數(shù)值計(jì)算方法。在計(jì)算機(jī)中,仿真了光學(xué)多孔徑成像系統(tǒng)的成像全過程,完成了幾種常用圖像復(fù)原算法在光學(xué)多孔徑成像系統(tǒng)中的應(yīng)用。 2.在光學(xué)多孔徑成像系統(tǒng)的圖像復(fù)原算法中,常用到點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)。對(duì)于光學(xué)多孔徑成像系統(tǒng),點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)可以通過實(shí)驗(yàn)測(cè)量得到,也可以根據(jù)陣列排布形式進(jìn)行計(jì)算。這兩種點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)都可以進(jìn)行圖像復(fù)原。利用實(shí)驗(yàn)方法測(cè)量得到的點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)包含噪聲,在構(gòu)建濾波器后對(duì)系統(tǒng)直接觀測(cè)圖像進(jìn)行復(fù)原,會(huì)令復(fù)原圖像質(zhì)量下降。相反,計(jì)算的點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)因?yàn)椴缓性肼,可以很好地?fù)原光學(xué)多孔徑成像系統(tǒng)的直接觀測(cè)圖像。本文通過理論分析、仿真和實(shí)驗(yàn)方法,確定當(dāng)光學(xué)多孔徑成像系統(tǒng)接近理想成像狀態(tài)時(shí),應(yīng)采用計(jì)算的點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)構(gòu)建濾波器進(jìn)行圖像復(fù)原,而實(shí)驗(yàn)測(cè)量的點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù),不適合在光學(xué)多孔徑成像系統(tǒng)中使用。 3.研究了大氣湍流對(duì)光學(xué)多孔徑成像系統(tǒng)的影響。對(duì)于地基光學(xué)多孔徑成像系統(tǒng),大氣湍流不可避免。因?yàn)榇髿馔牧魇且环N隨機(jī)介質(zhì),令大氣折射率隨機(jī)變化,所以導(dǎo)致光束波前在大氣中傳播受到隨機(jī)影響。通過研究大氣湍流隨機(jī)相位屏理論和模型,在計(jì)算機(jī)中建立了大氣湍流隨機(jī)相位屏的數(shù)值仿真。在光學(xué)多孔徑成像系統(tǒng)的成像過程中加入大氣湍流隨機(jī)相位屏,實(shí)現(xiàn)光學(xué)多孔徑成像系統(tǒng)在大氣湍流中的成像仿真。提出一種基于總變分(Total Variation, TV)準(zhǔn)則的多幀盲解卷積圖像復(fù)原算法,成功應(yīng)用于仿真的受大氣湍流影響的光學(xué)多孔徑成像系統(tǒng)中。此外在實(shí)驗(yàn)室中搭建了有大氣湍流的光學(xué)多孔徑成像系統(tǒng)成像實(shí)驗(yàn),通過實(shí)驗(yàn)獲得有大氣湍流的光學(xué)多孔徑成像系統(tǒng)的直接觀測(cè)圖像序列,利用基于TV準(zhǔn)則的多幀盲解卷積圖像復(fù)原算法成功復(fù)原了直接觀測(cè)圖像,克服了大氣湍流影響。 4.研究了光學(xué)多孔徑成像系統(tǒng)的共相誤差對(duì)成像性能的影響。光學(xué)多孔徑成像系統(tǒng)的共相誤差在光學(xué)多孔徑成像系統(tǒng)的裝配過程中產(chǎn)生。通過對(duì)光學(xué)多孔徑成像系統(tǒng)的共相誤差建模,得到包含共相誤差分布的出瞳函數(shù),從而利用角譜傳播算法得到光學(xué)多孔徑成像系統(tǒng)的點(diǎn)擴(kuò)展函數(shù)和光學(xué)傳遞函數(shù)。通過分析光學(xué)傳遞函數(shù),了解共相誤差對(duì)光學(xué)多孔徑成像系統(tǒng)的成像性能影響。共相誤差會(huì)極大的降低光學(xué)多孔徑成像系統(tǒng)的頻率響應(yīng),導(dǎo)致最高分辨率降低,令光學(xué)多孔徑成像系統(tǒng)無法高分辨率成像。為了校正共相誤差,提出了一種基于數(shù)字全息波前探測(cè)技術(shù)的光學(xué)多孔徑成像系統(tǒng)共相誤差探測(cè)方法。推導(dǎo)了采用離軸數(shù)字全息記錄和重構(gòu)波前的過程,在計(jì)算機(jī)中實(shí)現(xiàn)完整的數(shù)字全息對(duì)光學(xué)多孔徑成像系統(tǒng)的波前探測(cè)過程。根據(jù)重構(gòu)的光學(xué)多孔徑成像系統(tǒng)出瞳函數(shù)的相位分布,分析并得到了共相誤差的相關(guān)信息。搭建了一套離軸數(shù)字全息波前探測(cè)光路,,成功測(cè)量了光學(xué)多孔徑成像系統(tǒng)的出瞳函數(shù)相位分布,并且通過1/4波片模擬了包含共相誤差的光學(xué)多孔徑成像系統(tǒng),利用重構(gòu)出瞳函數(shù)分析得到了1/4波片模擬的共相誤差信息。
[Abstract]:People with in-depth exploration of outer space, for astronomical telescope performance exploration mission has become an important factor to affect the observation result. In order to observe the more distant astronomical objects, demands more and more people the angular resolution of astronomical telescope for astronomical telescope. High angular resolution will inevitably lead to the telescope aperture size increases, for a reflecting telescope, which means that the single specular reflection mirror manufacturing large size. For large size single mirror mirror, because the weight is too large, easy to form variable mirror, so the mirror surface curvature radius is difficult to ensure the accuracy of detection methods. In addition, oversized mirror curvature is more complicated. These problems will lead to the rapid growth of the manufacturing cost of the telescope. There is an urgent need to put forward a new method to solve high resolution angle The optical multi aperture imaging system can both achieve high angular resolution imaging and avoid the manufacture of ultra large single aperture telescopes.
Optical multi aperture imaging system inspired by synthetic aperture radar imaging, the beam emitted by distant objects collected a number of smaller caliber sub sub telescope telescope. According to a certain form of arrangement, the formation of the beam array, collected together into the imaging section, mutual interference, common imaging. Because the optical multi aperture imaging system capable of imaging a therefore, very suitable for the observation of rapid change, such as a supernova explosion, outer space aircraft and satellite monitoring, also can realize high resolution detection of ground investigation in outer space orbit, and has broad application prospects. At present, the research on optical multi aperture imaging system at home and abroad is still very active.
This paper mainly discusses the methods to improve the imaging performance of multi aperture imaging system in three aspects, including the noise point spread function and the optical transfer function of image quality and the effect of atmospheric turbulence on the optical properties of multi aperture imaging system, and the influence is the phase error on the imaging performance. Through a series of theoretical analysis. Numerical simulation and optical experiment, obtained a large number of experimental data, this paper introduces some methods to improve the performance of multi aperture optical imaging system. The main contributions of the paper are as follows:
1. the study of the imaging process of optical multi aperture imaging system, the physical model and mathematical model. Analyzed and obtained by arrays of optical multi aperture imaging system to obtain a method for pupil function, derived by optical multi aperture imaging system exit pupil function to calculate the point spread function and the optical transfer function, study the sampling interval of the relationship between the three. The optical multi aperture imaging system to spread the pupil function in free space is studied, a calculation method of calculation of optical multi aperture imaging system point spread function and the optical transfer function value is obtained. In the computer, the whole process of imaging simulation of optical multi aperture imaging system complete the application, several commonly used image restoration algorithm in optical multi aperture imaging system.
2. algorithms of image restoration in optical multi aperture imaging system, commonly used to point spread function and the optical transfer function for optical multi aperture imaging system, point spread function and the optical transfer function can be obtained by experimental measurement, can also be calculated according to the array arrangement form. The two point spread function and the optical transfer function can be carried out image restoration. By using the experimental method of measuring the noise included point spread function and the optical transfer function, in the construction of the filter on image restoration system of direct observation, will make the image quality decline. Instead, the calculation of the point spread function and the optical transfer function does not contain noise, can well restore the optical images multi aperture imaging system. Through theoretical analysis, simulation and experimental methods to determine when the optical multi aperture imaging system close to the ideal image. When the state is used, we should use the point spread function and optical transfer function to reconstruct the image, and the point spread function and the optical transfer function measured by experiment are not suitable for optical multi aperture imaging system.
3. the influence of atmospheric turbulence on optical multi aperture imaging system for ground-based optical multi aperture imaging system, the atmospheric turbulence is inevitable. Because the atmospheric turbulence is a kind of random medium, the random variations of the refractive index, so the wavefront propagation by random effects in the atmosphere. Through the study of atmospheric turbulence phase screen theory and model and the numerical simulation of atmospheric turbulence phase screen based on the computer. Join the atmospheric turbulence phase screen in the imaging process of optical multi aperture imaging system, imaging simulation in atmospheric turbulence optical multi aperture imaging system. This paper proposes a total variation based on (Total, Variation, TV) multi frame blind criterion deconvolution image restoration algorithm, the influence of atmospheric turbulence on optical multi aperture imaging system was successfully applied in the simulation. In addition in the laboratory was built with atmospheric turbulence Optical multi aperture imaging system with optical flow experiment, the atmospheric turbulence multi aperture imaging system through the direct observation image sequence, using the TV criterion of multiframe blind deconvolution image restoration algorithm based on image restoration success observed directly, to overcome the influence of atmospheric turbulence.
A total of 4. of the effect of phase error of optical multi aperture imaging system for imaging performance. Optical multi aperture imaging system consists of phase error generated in the assembly process of optical multi aperture imaging system. Through the phase error on the optical multi aperture imaging system modeling, including total phase error distribution of exit pupil function, thus by using the angular spectrum propagation algorithm to obtain optical multi aperture imaging system point spread function and the optical transfer function of optical transfer function. Through the analysis, to understand the impact of common phase error on the performance of multi aperture imaging optical imaging system. Phase error will reduce the optical multi aperture imaging system wide frequency response, resulting in the highest resolution reduced to optical multi aperture imaging system to high-resolution imaging. In order to correct common phase error, presents an optical digital holographic wavefront detection technology based on multi aperture imaging system Method for detecting phase error is derived. The process of off-axis digital holographic recording and reconstruction of the wavefront, the realization process of digital holographic wavefront complete on optical multi aperture imaging detection system in the computer. According to the phase distribution of pupil function reconstruction of optical multi aperture imaging system, analysis and relevant information and phase error. A set of off-axis digital holographic wavefront detection optical path, optical multi aperture imaging system exit pupil function of the phase distribution was measured successfully, and through the 1/4 simulation of the optical wave plate multi aperture imaging system includes phase error, using the reconstructed pupil function analysis of the total phase error information of 1/4 wave plate simulation.

【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TH751

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 白劍,程上彝,楊國光;大口徑鏡面的多孔徑拼接技術(shù)[J];光學(xué)學(xué)報(bào);1997年07期

2 汪長城;廖明生;;一種多孔徑SAR圖像目標(biāo)檢測(cè)方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2009年01期

3 王曉明;喬彥峰;;地基多孔徑成像系統(tǒng)驗(yàn)證實(shí)驗(yàn)設(shè)計(jì)[J];中國光學(xué)與應(yīng)用光學(xué);2010年06期

4 姜錦虎;張熹;吳君毅;;方環(huán)孔徑散焦散斑法測(cè)量離面位移梯度場(chǎng)[J];蘇州大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年02期

5 陳炳泉;;多孔徑徑向分級(jí)調(diào)頻法的白光散斑照相[J];應(yīng)用激光;1989年05期

6 吳衛(wèi)國,吳梅英;昆蟲視覺的研究及其應(yīng)用[J];昆蟲知識(shí);1997年03期

7 程維明,林有略,陳明儀;多孔徑掃描波面恢復(fù)技術(shù)的精度評(píng)定及影響因素[J];光學(xué)學(xué)報(bào);1993年08期

8 高愛華,朱傳貴;多孔徑光學(xué)仿復(fù)眼圖像采集原理[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年04期

9 黃峰;賈文武;侯軍燕;郭雙飛;汪岳峰;董偉;;應(yīng)用多孔徑光束積分原理的LD端面抽運(yùn)耦合系統(tǒng)[J];紅外與激光工程;2010年03期

10 ;幾何光學(xué)元器件[J];中國光學(xué)與應(yīng)用光學(xué)文摘;1998年02期

相關(guān)會(huì)議論文 前10條

1 李貅;宋建平;全紅娟;;多孔徑瞬變電磁場(chǎng)輻射特性研究[A];中國地球物理.2003——中國地球物理學(xué)會(huì)第十九屆年會(huì)論文集[C];2003年

2 張宏建;田維堅(jiān);屈有山;張薇;馮桂蘭;;多孔徑光學(xué)成像系統(tǒng)的研究[A];2007年中國青年光學(xué)學(xué)術(shù)研討會(huì)論文摘要集[C];2007年

3 徐昊;何悅;陳澤忠;唐宏武;吳瓊水;;阿達(dá)瑪變換顯微近紅外光譜成像系統(tǒng)[A];第十屆中國化學(xué)會(huì)分析化學(xué)年會(huì)暨第十屆全國原子光譜學(xué)術(shù)會(huì)議論文摘要集[C];2009年

4 何慶國;卜愛民;李松發(fā);;毫米波多通道成像系統(tǒng)[A];2001年全國微波毫米波會(huì)議論文集[C];2001年

5 李興國;;毫米波被動(dòng)式焦平面陣列成像系統(tǒng)及參數(shù)選擇[A];1999年全國微波毫米波會(huì)議論文集(下冊(cè))[C];1999年

6 梅志林;竇文斌;;小F數(shù)透鏡焦區(qū)像場(chǎng)彎曲現(xiàn)象分析[A];2001年全國微波毫米波會(huì)議論文集[C];2001年

7 V.P.Gorishniak;Denisiv A.G.;S.E.Kuzmin;V.N.Radzikhovsky;B.M.Shevchuk;李英方;;32通道毫米波被動(dòng)成像系統(tǒng)[A];2003'全國微波毫米波會(huì)議論文集[C];2003年

8 張迪;錢夢(mèng)

本文編號(hào):1383865


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/tianwen/1383865.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2b1b5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com