天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

深覆蓋層面板堆石壩應(yīng)力應(yīng)變分析

發(fā)布時間:2018-03-17 02:37

  本文選題:混凝土面板堆石壩 切入點(diǎn):深覆蓋層 出處:《蘭州交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:混凝土面板堆石壩由于其廣泛的適應(yīng)性,較高的安全性和較好的經(jīng)濟(jì)性而被廣泛應(yīng)用于工程實(shí)際。隨著堆石壩的廣泛運(yùn)用,在我國已有很多深覆蓋層上建壩的工程實(shí)例,對深覆蓋層混凝土面板堆石壩的應(yīng)力變形問題的研究探討就顯得尤為重要。 本文全面介紹了面板堆石壩的發(fā)展歷程,研究現(xiàn)狀,并從深覆蓋層建壩的特點(diǎn)出發(fā),以察哈烏蘇混凝土面板堆石壩為例,研究了深覆蓋層上建壩對壩體的應(yīng)力變形的影響。通過多方面的比較,鄧肯張的E-B模型由于其模型參數(shù)代表的物理意義相對較明確,且應(yīng)力應(yīng)變關(guān)系曲線與實(shí)測曲線擬合性較好,故文章選取鄧肯張的E-B模型作為堆石體本構(gòu)模型,并對其進(jìn)行詳細(xì)的介紹。 文章建立了察哈烏蘇混凝土面板堆石壩三維有限元模型,采用有限元分析方法,利用ANSYS軟件對壩體分級施工和加載進(jìn)行了模擬,并選取了三個壩體典型剖面,對竣工期、死水位和正常蓄水位三種工況下的壩體和面板的應(yīng)力、變形進(jìn)行了分析。通過分析得出:竣工期,壩體大、小主應(yīng)力對應(yīng)的最大受拉區(qū)都在上游壩體與厚覆蓋層接觸的壩尖處,大主應(yīng)力對應(yīng)的最大受壓區(qū)則位于壩體的二分之一處對應(yīng)的厚覆蓋層的最底端。沿著壩坡方向,面板大體處于受壓狀態(tài),,且底部的壓應(yīng)力較大,但在壩頂及岸坡附近出現(xiàn)較小的拉應(yīng)力;岸坡兩側(cè)面板主要發(fā)生順流方向的位移,且位移值很小,而河床段面板發(fā)生了較大的逆流方向位移。故竣工后面板會出現(xiàn)一定的鼓起和脫空。蓄水之后,壩體大、小主應(yīng)力對應(yīng)的最大受拉區(qū)和最大受壓區(qū)的位置都變化不大,由于水壓力的影響,面板出現(xiàn)一定程度的彎曲變形,面板所受拉應(yīng)力和壓應(yīng)力都隨著水位的增加而增大,但壓應(yīng)力的增幅明顯大于拉應(yīng)力?傮w上,蓄水后由于面板傳遞的水壓力作用,壩體逆流位移有明顯減小,而順流位移有所增加,最大逆流位移位置上移至面板與趾板連接處正下方30m左右覆蓋層處。受到水壓力的作用,面板的順流位移出現(xiàn)大幅度的增加,逆流位移則有所減小,脫空現(xiàn)象消失?傮w上,三種工況下大主應(yīng)力呈不對稱分布,上游壩體所受壓應(yīng)力明顯大于下游;小主應(yīng)力的分布呈略偏上游的對稱分布。 通過分析,通常在深覆蓋層面板壩的面板與趾板連接處出現(xiàn)最大拉應(yīng)力,故在面板施工時,應(yīng)該做好面板與趾板的連接與接縫處理。由于面板在竣工期會出現(xiàn)一定的隆起脫空現(xiàn)象,因此要求混凝土面板具有一定的抵抗彎曲變形的能力。
[Abstract]:Concrete face rockfill dam is widely used in engineering practice because of its wide adaptability, high safety and good economy. It is very important to study the stress and deformation of deep overburden concrete face rockfill dam. In this paper, the development history and present situation of the concrete face rockfill dam are introduced. Based on the characteristics of the deep overburden dam, the paper takes Chahawusu concrete face rockfill dam as an example. The influence of dam construction on the stress and deformation of the dam body in deep overburden is studied. Through the comparison of various aspects, the E-B model of Duncan Chang is relatively clear because of the physical meaning of its model parameters. The stress-strain relationship curve fits well with the measured curve, so this paper chooses Duncan Chang's E-B model as the constitutive model of rockfill and introduces it in detail. In this paper, the three-dimensional finite element model of Chahawusu concrete face rockfill dam is established. By using the finite element analysis method and ANSYS software, the construction and loading of the dam body are simulated, and three typical sections of the dam body are selected for the completion period. The stress and deformation of dam body and face slab under three working conditions of dead water level and normal storage water level are analyzed. It is concluded that the maximum tension area corresponding to large dam body and small principal stress is located at the top of the dam in the upper reaches of the dam body in contact with thick overburden layer. The maximum compression region corresponding to the large principal stress is located at the bottom of the thick overburden corresponding to 1/2 points of the dam body. Along the direction of the dam slope, the face slab is generally in the state of compression, and the compressive stress at the bottom is large. However, there are small tensile stresses near the dam top and bank slope, and the displacement in the downstream direction is mainly observed on both sides of the bank slope, and the displacement value is very small. However, the face slab of the river bed has a large countercurrent displacement. After completion, there will be a certain bulging and emptying of the face slab. After water storage, the position of the maximum tension zone and the maximum compression area corresponding to the large dam body and the small principal stress will not change much, and the position of the maximum tension area and the maximum compression area will not change much after the completion of the dam. Due to the influence of water pressure, the face slab appears a certain degree of bending deformation. The tensile stress and compressive stress of the face plate increase with the increase of water level, but the increase of compressive stress is obviously larger than that of tensile stress. After water storage, the countercurrent displacement of the dam body decreases obviously due to the effect of the water pressure transmitted by the face slab, while the downstream displacement increases, and the position of the maximum countercurrent displacement moves up to the cover layer about 30 m below the joint of the face slab and the toe plate, which is affected by the water pressure. The downstream displacement of the face slab increases by a large margin, the countercurrent displacement decreases, and the void phenomenon disappears. In general, the large principal stress is distributed asymmetrically under three working conditions, and the compressive stress of the upstream dam body is obviously larger than that of the downstream dam body. The distribution of small principal stress is slightly upstream symmetrical distribution. Through analysis, the maximum tensile stress usually appears at the joint of the face slab and toe slab of the deep overburden face slab dam, so in the construction of the face slab, The connection and joint treatment between the slab and the toe slab should be done well. Due to the phenomenon of uplift and void in the completion period of the concrete slab, it is required that the concrete slab has the ability to resist bending and deformation.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV641.43

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳興征,欒茂田,陰吉英;面板堆石壩應(yīng)力與變形彈塑性有限元計(jì)算與分析[J];大連理工大學(xué)學(xué)報(bào);2000年05期

2 郭興文,王德信,蔡新;覆蓋層地基上混凝土面板堆石壩優(yōu)化設(shè)計(jì)研究[J];河海大學(xué)學(xué)報(bào);1998年04期

3 呂生璽;;九甸峽混凝土面板堆石壩應(yīng)力和變形有限元分析[J];南水北調(diào)與水利科技;2010年03期

4 常雙梅;何文社;常周梅;張碩;;基于分級加載的高面板堆石壩應(yīng)力變形分析[J];南水北調(diào)與水利科技;2013年06期

5 邱乾勇;沈振中;王偉;;深覆蓋層對面板堆石壩面板變形和應(yīng)力的影響[J];水力發(fā)電;2008年01期

6 高蓮士,汪召華,宋文晶;非線性解耦K-G模型在高面板堆石壩應(yīng)力變形分析中的應(yīng)用[J];水利學(xué)報(bào);2001年10期

7 溫續(xù)余;徐澤平;邵宇;呂生璽;;深覆蓋層上面板堆石壩的防滲結(jié)構(gòu)形式及其應(yīng)力變形特性[J];水利學(xué)報(bào);2007年02期

8 劉祖德;土石壩變形計(jì)算的若干問題[J];巖土工程學(xué)報(bào);1983年01期

9 盧廷浩,高貴全,陳劍;蓄水后土石壩應(yīng)力變形有效應(yīng)力算法[J];巖土力學(xué);2005年02期

10 呂生璽;沈振中;溫續(xù)余;;九甸峽混凝土面板堆石壩地震反應(yīng)特性研究[J];中國農(nóng)村水利水電;2008年02期



本文編號:1622826

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shuiwenshuili/1622826.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fa412***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com