天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 石油論文 >

基于測井、地震屬性和和聲阻抗的沉積相圈定—巴基斯坦下印度河盆地Sawan地區(qū)

發(fā)布時間:2023-09-13 21:40
  本研究的目的是描述巴基斯坦中印度河盆地Sawan氣田下Goru組C砂巖層段砂泥相分布及其古環(huán)境。用于相分析等的數(shù)據(jù)包括測井資料、三維疊后地震資料、公開的巖心資料和最近的生產(chǎn)資料。研究區(qū)域自2003年起共鉆有15口井,下Goru組C砂巖層(在工區(qū)內(nèi)以X1水平線作為標(biāo)記)為已探明儲層,氣藏潛力巨大。Sawan氣田是巴基斯坦中印度河盆地最具開發(fā)潛力的氣田之一,累計產(chǎn)量達8500億立方英尺。在儲層(C砂巖層)中,薄頁巖層序互層分散,非均質(zhì)性極強。因此,傳統(tǒng)的地震振幅解釋難以較好地描述砂泥巖相的分布。本文將C砂巖儲層的沉積相與地震相分析相結(jié)合,采用了基于隨機建模技術(shù)的相建模,測井相分析,基于三維疊后地震屬性的近期生產(chǎn)數(shù)據(jù)分析,甜點評價,人工螞蟻跟蹤法自動斷層提取,以及基于約束稀疏脈沖反演結(jié)果的儲層描述等,來進行前景預(yù)測和油田開發(fā)規(guī)劃,以達到產(chǎn)出的最大化。通過對地震剖面和標(biāo)志層的全面地震解釋,發(fā)現(xiàn)工區(qū)C砂巖段目標(biāo)區(qū)相當(dāng)連續(xù),地層圈閉是儲層砂巖成藏的主要原因。綜合地震分析揭示,C砂巖層段為平行或亞平行反射,具有較大的反射幅值,介質(zhì)反射連續(xù)性好,介質(zhì)反射頻率中等,具有楔狀幾何外形。盆地坡面和充填體定義...

【文章頁數(shù)】:222 頁

【學(xué)位級別】:博士

【文章目錄】:
COVER LETTER (RESUME)
摘要
Abstract
DEDICATION
Acronyms and Abbreviations
1 Introduction
    1.1 Problem Statement and Motivation of Research Goal
    1.2 Research Background of the Study Area
    1.3 Objectives of the Research
    1.4 Research Innovation
    1.5 Generalized Workflow
    1.6 Structure of the Dissertation
    1.7 Limitation,Future Work and Implications
    1.8 Software Used
2 General Geology and Stratigraphy
    2.1 Sedimentary Basins of Pakistan
    2.2 Classification of Indus Basin
        2.2.1 Southern Indus Basin
    2.3 Structural Evolution and Stratigraphic Characteristics
    2.4 Tectonics
    2.5 Petroleum Prospects
    2.6 Source Rocks
        2.6.0 Sember Formation
        2.6.1 Ranikot Formation
        2.6.2 Goru Formation
    2.7 Reservoir Rocks
        2.7.1 Lower Goru Formation
    2.8 Trap and Seal
        2.8.1 Upper Goru Formation
        2.8.2 Lower Goru Formation
    2.9 Petrographic Analysis of C-Sand
        2.9.1 Framework Mineralogy
        2.9.2 Texture
        2.9.3 Mineralogical and textural maturity
3 Data Set and Methodology
    3.1 Study Area
    3.2 Source of Acquired Data
        3.2.1 Data Formats
    3.3 Basemap
    3.4 Seismic Data
    3.5 Processig and Acquisition of the Sawan field Parameters
    3.6 Well Data
    3.7 Research Methodology
4 Seismic Interpretation
    4.1 Synthetic Seismogram
        4.1.1 Theory of Synthetic Seismogram
        4.1.2 Steps of Synthetic Seismogram
    4.2 Seismic Interpretation Analysis
        4.2.1 Seismic Horizons
        4.2.2 Structure and Thickness Maps
    4.3 Facies Analysis
        4.3.1 Seismic Facies
        4.3.2 Sedimentary Facies
        4.3.3 Log facies
    4.4 Integrated Seismic Facies Analysis
        4.4.1 Seismic Facies-1(SF-1)
        4.4.2 Seismic Facies-2(SF-2)
        4.4.3 Seismic Facies-3(SF-3)
        4.4.4 Seismic Facies-4(SF-4)
        4.4.5 Seismic Facies-5(SF-5)
        4.4.6 Seismic Facies-6(SF-6)
        4.4.7 Seismic Facies-7(SF-7)
    4.5 Depositional Environments of Seismic Facies
        4.5.1 Depositional Facies(DF-1)
        4.5.2 Depositional Facies(DF-2)
        4.5.3 Depositional Facies(DF-3)
    4.6 Combined Facies Analysis of C-sand
        4.6.1 Landward Facies Analysis of C-Sand
        4.6.2 Transitional Facies Analysis of C-Sand
        4.6.3 Basinward Facies Analysis of C-Sand
    4.7 Discussion
    4.8 Conclusion
5 Facies Modeling
    5.1 Introduction
    5.2 Facies Modeling
    5.3 Reservoir Modeling Workflow
        5.3.1 Measures to be Employed to Improve a3D Geological Model
        5.3.2 Modeling Steps Under Geostatistical Modeling
    5.4 Procedure Used to Construct3D Geological Model
        5.4.1 Organize and Prepare Input Data
        5.4.2 Making Surface from Contour Lines and Horizons
        5.4.3 Stratigraphic Modeling
        5.4.4 Structure Modeling
        5.4.5 Property Modeling
    5.5 Results and Summary
6 Well-Log Facies Interpretation
    6.1 Petrophysical Analysis
        6.1.1 Volume of Shale
        6.1.2 Porosity
    6.2 Log Curve Shape Analysis for Facies Identification
    6.3 Facies Identified from Gamma Ray Logs
        6.3.1 EF-1(Funnel-Shaped Successions)
        6.3.2 EF-2(Bell-Shaped Successions)
        6.3.3 EF-3(Cylindrical-Shaped Successions)
        6.3.4 EF-4 Irregular Log Trends(Serrated-Shaped Successions)
        6.3.5 EF-5 Irregular Log Trends
    6.4 Geological Modeling and Depositional Environment
    6.5 Creation of Facies Logs Using Petrophysical Properties
    6.6 Crossplots for Lithology Discrimination
    6.7 Conclusion
7 Seismic Attribute Analysis
    7.1 Overview
    7.2 3D Seismic Attribute Extraction& Analysis
    7.3 Volume Attributes
        7.3.1 Relative Acoustic Impedance
        7.3.2 RMS Amplitude
        7.3.3 Envelope of Trace(Reflection Strength/Instantaneous Amplitude)
        7.3.4 Sweetness
        7.3.5 Instantaneous Frequency
        7.3.6 Phase Shift
        7.3.7 Structural smoothing
    7.4 Sweet Spot Evaluation
    7.5 Horizon Attributes
        7.5.1 RMS Amplitude
        7.5.2 Half Energy
        7.5.3 Instantaneous Frequency
        7.5.4 Instantaneous Phase
    7.6 Automatic Fault Extraction Using Artificial Ant-Tracking
        7.6.1 Variance
        7.6.2 Chaos
        7.6.3 Structural Smoothing
    7.7 Ant Tracking Algorithm
        7.7.1 Ant Tracking Result
    7.8 Extraction of the Faults and Fractures
    7.9 Conclusion
8 Seismic Inversion and Reservoir Characterization
    8.1 Problems and inversion method in the study area
        8.1.1 Effect of heterogeneity in the C-sand interval
        8.1.2 Inversion method applied in the study area
        8.1.3 Acoustic Impedance
        8.1.4 Retrieval of acoustic impedance
        8.1.5 Estimation of acoustic impedance from broadband seismic data
        8.1.6 Estimation of acoustic impedance from band-limited seismic data
        8.1.7 Principle of Constrained sparse spike inversion
        8.1.8 Horizon interpretations
        8.1.9 Creating Missing Logs
        8.1.10 Wavelet Estimation and Synthetic Seismogram
        8.1.11 Low-frequency Model
        8.1.12 Interpolation of well log acoustic impedance
        8.1.13 Constrained Sparse Spike Inversion
        8.1.14 Edit Trend
        8.1.15 Trace Merging
        8.1.16 QC Parameters
    8.2 Results and Discussion
        8.2.1 Acoustic impedance analysis(Map view)
    8.3 Seismic characterization of reservoir parameters
        8.3.1 Reservoir porosity distribution
        8.3.2 Reservoir Sand Ratio distribution
    8.4 Conclusion
9 Conclusions and Recommendations
    9.1 Overview of the Study and Issues
    9.2 Output of the Study
    9.3 Main Findings of the Study Area
    9.4 Suggestions and Recommendations
ACKNOWLEDGEMENTS
References



本文編號:3845965

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/3845965.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶19665***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com