石化行業(yè)固定儲(chǔ)罐VOCs排放估算方法研究
[Abstract]:Petroleum and its products account for a considerable proportion of China's energy structure, and China has developed into a major oil producer and consumer. Petroleum and its products are mixtures of many hydrocarbons, in which the light components have strong volatility, which has a serious impact on enterprises and society in terms of safety, environment, energy and so on. Volatile organic compounds (VOCs) are very important trace components in the tropospheric layer. Volatile organic compounds (VOCs) play an extremely important role in the process of atmospheric chemistry and have important effects on the formation of secondary organic pollutants, atmospheric oxidation ability, human health and so on. The estimation methods of VOC emission from petrochemical fixed storage tanks are different from country to country. In this paper, the effects of storage real vapor pressure, tank diameter, turnover, molecular weight and color of storage tank on tank emission are studied by using BP neural network estimation method. BP neural network can be used to be fast and simple. It is of great guiding value to estimate the VOCs emission of storage tank effectively. (1) through the analysis of four VOCs emission estimation methods of petrochemical storage tank, it is determined that the main influencing factor of tank emission is the daily average temperature difference of storage. The real vapor pressure of the storage material, the turnover of the storage material, the molar molecular weight of the storage material, etc., the secondary influencing factors are the volume of the storage tank, the height of the storage material, (2) taking the gasoline tank and methanol tank of a petrochemical enterprise in Shanghai as an example, the total loss of the tank is compared with that of the Ministry of Finance, among which the TANKS model recommended by EPA is the closest. The static loss error of gasoline tank is 39.16%, the working loss error is 2.14%, the static loss error of methanol tank is 33.24%, and the working loss error is 50.95%. The difference between the calculation method of Japan's "success stories of reducing Pollutant emissions and transfer of registered substances" (hereinafter referred to as the example) and the results of the Ministry of Finance is the second, with the static loss error of gasoline tanks being 83.14%. The working loss error is 106.23%, the static loss error of methanol tank is 54.04%, and the working loss error is 142.10%. The recommended formula of Oil Depot Energy Saving Guide has the largest error. (3) BP neural network is used to simulate the VOCs emission of fixed storage tanks in petrochemical enterprises, and the accuracy of BP simulation results is verified. The average error of static loss is 5.57% and the average error of work loss is 3.46%.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X74
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉昭;趙東風(fēng);孫慧;李石;韓豐磊;;石化企業(yè)固定頂儲(chǔ)罐揮發(fā)性有機(jī)物排放量影響因素的分析[J];化工環(huán)保;2015年05期
2 謝躍群;羅金蓮;;浮頂罐大呼吸損耗公式的探討[J];化工設(shè)計(jì)通訊;2015年04期
3 郭兵兵;劉忠生;王新;王海波;;石化企業(yè)VOCs治理技術(shù)的發(fā)展及應(yīng)用[J];石油化工安全環(huán)保技術(shù);2015年04期
4 王志偉;馬文娟;王卓;王江南;;石化企業(yè)無組織排放預(yù)測方法研究[J];廣州化工;2015年11期
5 錢偉;蔡慧華;余宇帆;羅超;劉玲英;吳榮方;;廣東省石化行業(yè)揮發(fā)性有機(jī)化合物排放污染及治理現(xiàn)狀[J];廣東化工;2015年08期
6 吳磊;趙東風(fēng);李石;歐陽振宇;薛建良;陳璐;韓豐磊;;石化行業(yè)VOCs對(duì)二次有機(jī)氣溶膠的貢獻(xiàn)及估算方法[J];現(xiàn)代化工;2014年08期
7 蘇雷燕;趙明;李巖;陳長虹;;環(huán)境空氣中揮發(fā)性有機(jī)物(VOCs)光化學(xué)行為的研究進(jìn)展[J];綠色科技;2013年11期
8 李靖;王敏燕;張健;何萬清;聶磊;邵霞;;基于Tanks 4.0.9d模型的石化儲(chǔ)罐VOCs排放定量方法研究[J];環(huán)境科學(xué);2013年12期
9 成慶林;邵帥;孫巍;李哲;衣犀;;固定頂儲(chǔ)罐原油蒸發(fā)損耗的計(jì)算方法[J];節(jié)能技術(shù);2013年05期
10 孟保川;吳依平;朱海嵩;;儲(chǔ)罐呼吸廢氣源強(qiáng)計(jì)算方法探討及防治措施[J];上海環(huán)境科學(xué);2013年04期
相關(guān)碩士學(xué)位論文 前10條
1 潘秀亮;苯乙烯中間罐區(qū)設(shè)計(jì)及安全性研究[D];大連理工大學(xué);2015年
2 萬昊天;固定頂儲(chǔ)罐弱壁防護(hù)結(jié)構(gòu)設(shè)計(jì)及優(yōu)化研究[D];大連理工大學(xué);2015年
3 賈瑋;原油儲(chǔ)罐呼吸損耗研究[D];西安石油大學(xué);2014年
4 周亞軍;煉油企業(yè)含惡臭物質(zhì)的VOCs治理技術(shù)及應(yīng)用[D];華東理工大學(xué);2014年
5 趙茜;降低石油油氣損耗研究[D];西安石油大學(xué);2013年
6 陳穎;我國工業(yè)源VOCs行業(yè)排放特征及未來趨勢研究[D];華南理工大學(xué);2011年
7 戴曉波;應(yīng)用BP神經(jīng)網(wǎng)絡(luò)定量估算石化煉油廢水處理中揮發(fā)的VOCs[D];東華大學(xué);2010年
8 陳北平;北京市油品蒸發(fā)損耗研究[D];北京交通大學(xué);2008年
9 王珊;中國不同區(qū)域大氣本底VOCs的觀測與研究[D];蘭州大學(xué);2008年
10 王紅福;煉油廠儲(chǔ)運(yùn)系統(tǒng)改造項(xiàng)目的決策分析與實(shí)施方案設(shè)計(jì)[D];河北工業(yè)大學(xué);2006年
,本文編號(hào):2495562
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2495562.html