基于CFD的渦輪流量計(jì)結(jié)構(gòu)優(yōu)化
[Abstract]:Turbine Flowmeter is a traditional flow measuring instrument, which is widely used and widely used. It is an important measuring instrument related to modern production, people's livelihood and national development. Under the situation of increasing shortage of oil resources, the flow measuring instrument for measuring oil products needs to have the characteristics of low loss and high precision. It is very important to improve the quality of turbine Flowmeter. In this paper, a liquid turbine Flowmeter with DN100 is studied. The effects of structural parameters on its internal flow field and pressure loss are studied by CFD. In addition, the impeller, front guide and rear guide structure of turbine Flowmeter sensor are optimized. The main work of this paper is as follows: (1) the three-dimensional model of DN100 turbine Flowmeter is established, and the internal flow field is simulated by Fluent, and then the pressure loss at both ends of the inlet and outlet is analyzed. (2) the number of blades and the top gap between the blades are changed. The speed and pressure of the impeller surface and the whole section under different blade number and the top gap between the blades are analyzed, and the optimization method of the blade is determined. (3) the chamfer angle and length of the front guide are changed, and the geometric model is introduced into Fluent for calculation. The influence of the influence on the pressure loss and velocity of the blade and the whole section is analyzed, and the optimization scheme of the structure of the front guide is determined. (4) the internal flow field is simulated by changing the chamfer angle and length of the guide, and according to the information of the internal flow field, The influence of pressure loss and velocity on the blade and the whole section is analyzed, and the optimization scheme of the rear guide structure is put forward. In this paper, the structure of turbine Flowmeter is optimized in detail, and the influence of each structural parameter on the overcurrent components and the whole flow field is found out, which provides the theoretical basis and design guidance for the actual production.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE863.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前8條
1 賈云飛;王振;蔣偉偉;;多變量非線性規(guī)劃算法下渦輪傳感器的優(yōu)化[J];化工自動化及儀表;2009年05期
2 趙丹;鄭丹丹;張濤;聶來曉;楊芳;吳朝暉;;上游彎頭和漸縮管對渦輪流量計(jì)測量性能的影響[J];化工自動化及儀表;2012年03期
3 胡岳;孫立軍;張濤;;漸縮管對渦輪流量傳感器測量性能的影響[J];化工自動化及儀表;2012年04期
4 石運(yùn)序;方世杰;李莉;范紅梅;;水閥內(nèi)置流量傳感器旋轉(zhuǎn)葉片的受力模型研究[J];機(jī)床與液壓;2008年02期
5 劉安琴;方世杰;石運(yùn)序;;基于FLUENT的水閥內(nèi)置流量傳感器設(shè)計(jì)及流場仿真[J];機(jī)械設(shè)計(jì)與制造;2009年04期
6 郭素娜;孫立軍;方艷;楊文量;;導(dǎo)流件和葉輪強(qiáng)作用渦輪流量計(jì)的CFD仿真方法[J];化工自動化及儀表;2013年10期
7 任尚華;;大慶外圍油田產(chǎn)出剖面測井流量測量精度分析[J];石油儀器;2009年02期
8 劉興斌;平琳;黃春輝;宋純高;;渦輪流量計(jì)在氣/水兩相流下響應(yīng)規(guī)律的實(shí)驗(yàn)研究[J];石油儀器;2010年04期
相關(guān)碩士學(xué)位論文 前10條
1 谷巧麗;光纖光柵流量傳感器的結(jié)構(gòu)設(shè)計(jì)與光譜特性研究[D];東北石油大學(xué);2011年
2 趙娜;熱示蹤法測量低產(chǎn)液水平井流量方法的研究[D];東北石油大學(xué);2011年
3 鄒建國;垂直上升管內(nèi)氣液兩相流鈍體繞流的數(shù)值模擬與實(shí)驗(yàn)研究[D];天津大學(xué);2010年
4 趙媛媛;渦輪流量傳感器的實(shí)驗(yàn)及仿真研究[D];天津大學(xué);2011年
5 王軍朋;浮子流量傳感器粘度影響研究[D];天津大學(xué);2012年
6 趙建亮;渦輪流量傳感器性能粘度影響的研究[D];天津大學(xué);2012年
7 于中偉;內(nèi)錐流量計(jì)的仿真與實(shí)驗(yàn)研究[D];天津大學(xué);2005年
8 葉佳敏;浮子流量傳感器的特性研究和結(jié)構(gòu)優(yōu)化[D];天津大學(xué);2006年
9 侯景義;氣液兩相流中渦輪響應(yīng)特性的研究[D];大慶石油學(xué)院;2007年
10 胡岳;基于數(shù)值仿真的渦街流量傳感器優(yōu)化[D];天津大學(xué);2007年
,本文編號:2475775
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2475775.html