致密油藏體積壓裂數(shù)值模擬研究
[Abstract]:Volume fracturing technology is to press out the secondary fracture around the main fracture while pressing out the main fracture, and continue to branch on the secondary fracture to form the second secondary fracture, and repeat this step. The main fracture is interlaced with the multi-stage secondary fracture and the natural crack is connected with the artificial crack to form a complex fracture network system. Through volume fracturing, the contact area between fracture surface and reservoir matrix is increased, the seepage distance from matrix to fracture is shortened, the overall permeability of reservoir is improved, and the production degree of oil and gas in reservoir is increased. In recent years, volume fracturing technology has been developed and widely used in the production of unconventional reservoirs by increasing the number of layers of small vertically exploitable reservoirs and increasing the output of single well, thus increasing the recoverable reserves of reservoirs. The technology of volume fracturing has emerged in recent years and has been widely used in the production of unconventional reservoirs. In order to improve the fracturing effect of compact reservoir volume fracturing, a finite element mathematical model considering starting pressure gradient is established in this paper. The triangular element is used to describe the matrix, the linear element is used to describe the fracture, and under the condition of natural energy exploitation, the finite element model is established. Taking single well as the research object, the influence of fracture parameters in volume fracturing on horizontal well development is studied. By means of orthogonal test design and analysis method, the half-length of fracture, the capacity of fracture diversion and the fracturing series of horizontal wells with different horizontal section lengths (1000m, 1300m, 1800m) are studied and analyzed for the daily production and water production of horizontal wells, and the results are as follows: (1 000 m, 1 300 m, 1 800 m). The influence law of dynamic parameters of daily production and cumulative oil production is given, and the optimal scheme of section length for different levels is given, which provides some theoretical guidance for the field application of volume fracturing technology in tight reservoirs.
【學位授予單位】:東北石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TE357
【參考文獻】
相關期刊論文 前10條
1 魏波;陳軍斌;謝青;張杰;王漢青;趙逸然;;基于擴展有限元的頁巖水平井壓裂裂縫擴展模擬[J];西安石油大學學報(自然科學版);2016年02期
2 臧偉;;大慶致密油儲層體積改造核磁共振實驗[J];大慶石油地質與開發(fā);2016年01期
3 王勇茗;余世福;周文軍;段志鋒;黃占盈;;長慶致密油三維水平井鉆井技術研究與應用[J];西南石油大學學報(自然科學版);2015年06期
4 任龍;蘇玉亮;郝永卯;張琪;孟凡坤;盛廣龍;;基于改造模式的致密油藏體積壓裂水平井動態(tài)分析[J];石油學報;2015年10期
5 逄仁德;高健明;崔莎莎;;水力泵送橋塞分段多簇體積壓裂技術在AP959井的應用[J];石油地質與工程;2015年04期
6 肖元相;來軒昂;周長靜;葉鳳婷;胡陽明;王亞娟;史華;;長慶氣田套管滑套壓裂技術的研究與應用[J];鉆采工藝;2015年04期
7 宋燕高;林立世;;川西氣田可鉆橋塞分段壓裂技術[J];油氣井測試;2015年03期
8 段瑤瑤;王欣;王永輝;嚴星明;鄢雪梅;;致密砂巖氣藏體積改造增產(chǎn)效果數(shù)值模擬[J];非常規(guī)油氣;2015年02期
9 馬春曉;尹洪軍;唐鵬飛;楊春城;王磊;FU Jing;;基于有限元的壓裂水平井滲流場分析[J];大慶石油地質與開發(fā);2015年02期
10 鄒才能;翟光明;張光亞;王紅軍;張國生;李建忠;王兆明;溫志新;馬鋒;梁英波;楊智;李欣;梁坤;;全球常規(guī)-非常規(guī)油氣形成分布、資源潛力及趨勢預測[J];石油勘探與開發(fā);2015年01期
相關會議論文 前1條
1 梁天成;付海峰;劉云志;盧擁軍;;大尺度水力壓裂模擬實驗裂縫診斷技術研究[A];2014年全國射線數(shù)字成像與CT新技術研討會論文集[C];2014年
相關博士學位論文 前2條
1 楊軍征;有限體積—有限元方法在油藏數(shù)值模擬中的原理和應用[D];中國科學院研究生院(滲流流體力學研究所);2011年
2 劉振宇;有限元法在油藏滲流中的理論和應用[D];大慶石油學院;2004年
相關碩士學位論文 前2條
1 張平平;頁巖氣藏壓裂數(shù)值模擬研究[D];東北石油大學;2013年
2 呂秀鳳;數(shù)值試井分析的有限元法理論研究[D];大慶石油學院;2004年
,本文編號:2444890
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2444890.html