天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 石油論文 >

煤礦長壁開采條件下埋地管道的變形破壞規(guī)律研究

發(fā)布時(shí)間:2019-03-13 09:30
【摘要】:近年來隨著煤礦資源的大量開采,引起的地面塌陷已影響了油氣管道的安全運(yùn)營,管道的失穩(wěn)破壞已經(jīng)引起技術(shù)人員和科研學(xué)者的普遍關(guān)注,但目前跨采空區(qū)的油氣管道的安全性研究尚不成熟,對(duì)長壁開采過程中的不同開采階段引起的管道變形破壞特征研究較少。本文以西氣東輸管道在山西蒿裕煤礦段為研究對(duì)象,選取適合大變形模擬的FLAC3D有限差分軟件,選取適合模擬管-土作用的結(jié)構(gòu)單元,借助MIDAS GTS NX進(jìn)行起伏地形三維模型的建立,對(duì)不同開采階段管道的變形破壞情況進(jìn)行分析,并將模擬所得數(shù)據(jù)與實(shí)際監(jiān)測數(shù)據(jù)進(jìn)行對(duì)比,保證所建立的模型與所用的巖土參數(shù)的可靠性。研究結(jié)果為沉陷區(qū)埋地管道的監(jiān)測和防護(hù)提供了理論依據(jù)。本文主要得到以下結(jié)論:(1)Liner結(jié)構(gòu)單元即具備管道薄殼的特性,又可以模擬管-土間的相互作用關(guān)系,故而在FLAC3D中更適合管道的模擬。(2)整個(gè)開采過程中最大下沉點(diǎn)均位于各開采階段采空區(qū)中心偏下山方向,第6步開采后管道附近地表出現(xiàn)隆起現(xiàn)象,第7步開采后,地表沉陷盆地下沉量發(fā)生突變。(3)管道變形后成漏斗狀,下沉值隨開采進(jìn)行逐漸增大,最大下沉點(diǎn)位于各開采階段采空區(qū)中心偏下山方向。(4)第6步開采結(jié)束后,管-土離層對(duì)于管道的安全性產(chǎn)生了威脅,管道有較大范圍的懸空段,第7步的開采使得懸空范圍內(nèi)的管道出現(xiàn)了應(yīng)力集中現(xiàn)象。(5)第7步開采結(jié)束后,管道部分拉應(yīng)力區(qū)應(yīng)力大于管道許用應(yīng)力,最大拉應(yīng)力為4.42e8,采空區(qū)內(nèi)側(cè)(x=240m)的安全系數(shù)為0.92,處于危險(xiǎn)狀態(tài),停采線外側(cè)(x=410m)的安全系數(shù)為1.11,接近于危險(xiǎn)狀態(tài)。所有開采階段的壓應(yīng)力均未超過管道的許用應(yīng)力;
[Abstract]:In recent years, with the large-scale mining of coal resources, the ground collapse has affected the safe operation of oil and gas pipelines, and the instability and destruction of pipelines has aroused the general concern of technicians and researchers. However, at present, the research on the safety of oil and gas pipelines across goaf is not mature, and the research on the characteristics of pipeline deformation and failure caused by different mining stages in the process of long-wall mining is less. In this paper, the west-to-east gas pipeline in Shanxi Haoyu coal mine section as the research object, select the FLAC3D finite difference software suitable for large deformation simulation, select the suitable structural element to simulate the pipe-soil action, with the help of MIDAS GTS NX to carry on the undulating terrain three-dimensional model establishment, The deformation and failure of pipelines in different mining stages are analyzed, and the simulated data are compared with the actual monitoring data to ensure the reliability of the established model and the geotechnical parameters used. The results provide a theoretical basis for the monitoring and protection of buried pipelines in subsidence areas. The main conclusions of this paper are as follows: (1) the Liner structural element not only has the characteristics of thin shell, but also can simulate the interaction between pipe and soil. Therefore, it is more suitable for pipeline simulation in FLAC3D. (2) during the whole mining process, the maximum subsidence point is located at the center of the goaf in the direction of downhill. After the sixth step of mining, the surface near the pipeline appears uplift phenomenon, and after the seventh step of mining, there is a uplift phenomenon near the surface of the pipeline. (3) the pipe becomes funnel-like after deformation, and the subsidence value increases gradually with mining. The maximum subsidence point is located at the center of the goaf in the direction of downhill. (4) after the sixth step of mining, the subsidence value increases gradually. (4) after the sixth step of mining, the subsidence is located in the center of the goaf. (4) after the end of the sixth step, The pipe-soil separation layer poses a threat to the safety of the pipeline, the pipeline has a large range of suspended segments, and the seventh step of mining causes the pipeline to appear stress concentration phenomenon in the suspended area. (5) after the seventh step of mining, the stress concentration phenomenon appears in the pipeline. (5) after the end of the seventh step mining, The maximum tensile stress of the pipeline is 4.42e8, the safety factor of the inner part of the goaf is 0.92. it is in a dangerous state, and the safety factor of the outer side of the stoppage line is 1.11, the maximum tensile stress of the pipeline is 4.42e8, the safety factor of the inner part of the goaf is 0.92, and the safety factor of the outer side of the stoppage line is 1.11, Close to danger. The compressive stress of all mining stages does not exceed the allowable stress of the pipeline;
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD823.4;TE973

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 白振才,,張龍,呂光華;國內(nèi)傾斜長壁開采技術(shù)及發(fā)展[J];山西煤炭;1994年02期

2 王玉浚;傾斜長壁開采時(shí)斜長的確定[J];煤礦設(shè)計(jì);1979年01期

3 王玉浚;傾斜長壁開采時(shí)斜長的確定(續(xù))[J];煤礦設(shè)計(jì);1979年02期

4 劉明遠(yuǎn);董春游;;淺析傾斜長壁開采的適用條件[J];煤炭科學(xué)技術(shù);1988年05期

5 ;國外長壁開采新產(chǎn)品[J];山東煤炭科技;1994年04期

6 ;改走向長壁為傾斜長壁開采[J];煤炭科學(xué)技術(shù);1977年11期

7 邢存恩,劉吉昌;傾斜長壁開采在煤礦技術(shù)改造中應(yīng)用研究[J];煤礦開采;1994年01期

8 G·R·斯平德勒,高慶塵;美國長壁開采歷史[J];中國煤炭;1997年09期

9 遲宇;;完美結(jié)合 比塞洛斯向力拓提供成套長壁開采系統(tǒng)[J];礦業(yè)裝備;2011年03期

10 姜慶樂;;長壁開采電氣控制系統(tǒng)的自動(dòng)化[J];世界煤炭技術(shù);1994年02期

相關(guān)會(huì)議論文 前10條

1 陳貴清;郝婷s

本文編號(hào):2439273


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2439273.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2664c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com