致密氣層壓裂井產(chǎn)能規(guī)律研究
[Abstract]:With the rapid development of economy, the demand for natural gas resources is increasing, only relying on conventional natural gas has been unable to keep up with the pace of economic development, more and more countries are looking to dense gas. However, the characteristics of dense gas are different from conventional natural gas, which brings many problems to exploitation and utilization. In view of the difficulties and shortcomings in predicting the productivity of tight gas reservoir fracturing wells in the field, this paper makes a related study on the prediction methods of the production capacity of tight gas reservoir fracturing wells. Based on the study of geological characteristics and stimulation measures of tight gas reservoirs, a sample set of factors affecting productivity of fracturing wells in tight gas reservoirs is established. This is mainly based on the screening principle of the impact of factors qualitative and quantitative analysis. The complexity of quantitative analysis is reduced by numerical simulation. The quantitative analysis adopts the method of orthogonal test and grey correlation analysis to obtain the specific influence degree of each factor. Based on this sample set, the model for predicting the productivity of tight gas reservoir fracturing wells is improved. In this paper, BP neural network and support vector machine are used to predict the productivity of tight gas reservoir fracturing wells, and the results are compared with the analytical formula. These two methods and GM (1 ~ 1) model are used to predict the production variation of fractured gas wells after putting into production. The productivity prediction software of tight gas reservoir fracturing well is compiled and the accuracy of gas well prediction result of a gas reservoir is given. Through the analysis of a gas well in a gas reservoir, it is found that the accuracy of mathematical statistical method is better than that of analytical formula method when predicting the productivity of fractured wells in tight gas reservoirs, among which the support vector machine method is the highest. The accuracy of SVM method is also the highest when predicting the rule of production variation of fracturing gas wells after putting into production. Support vector machine method does not need a lot of sample data, but it has good prediction effect.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE328
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉宇展;潘毅;鄭小敏;成志剛;張憲;楊大千;彭怡眉;;致密氣藏巖石應(yīng)力敏感對氣水兩相滲流特征的影響[J];復(fù)雜油氣藏;2013年03期
2 鄭小敏;成志剛;林偉川;董國敏;楊智新;;致密氣藏巖石滲透率應(yīng)力敏感對氣水兩相流動(dòng)影響實(shí)驗(yàn)研究[J];測井技術(shù);2013年04期
3 楊朝蓬;高樹生;郭立輝;熊偉;葉禮友;謝昆;;致密砂巖氣藏應(yīng)力敏感性及其對產(chǎn)能的影響[J];鉆采工藝;2013年02期
4 邱先強(qiáng);李治平;劉銀山;賴楓鵬;;致密氣藏水平井產(chǎn)量預(yù)測及影響因素分析[J];西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
5 孫建孟;運(yùn)華云;馮春珍;;測井產(chǎn)能預(yù)測方法與實(shí)例[J];測井技術(shù);2012年06期
6 時(shí)卓;石玉江;張海濤;劉天定;楊小明;;低滲透致密砂巖儲層測井產(chǎn)能預(yù)測方法[J];測井技術(shù);2012年06期
7 楊朝蓬;高樹生;劉廣道;熊偉;胡志明;葉禮友;楊發(fā)榮;;致密砂巖氣藏滲流機(jī)理研究現(xiàn)狀及展望[J];科學(xué)技術(shù)與工程;2012年32期
8 許春寶;何春明;;考慮非達(dá)西流效應(yīng)的致密氣藏壓裂優(yōu)化設(shè)計(jì)方法研究[J];科學(xué)技術(shù)與工程;2012年27期
9 張麗華;潘保芝;莊華;郭立新;李慶峰;趙小青;;低孔隙度低滲透率儲層壓裂后產(chǎn)能測井預(yù)測方法研究[J];測井技術(shù);2012年01期
10 宋洪慶;何東博;婁鈺;伊懷建;朱維耀;;低滲致密氣藏低速非線性滲流產(chǎn)能研究[J];特種油氣藏;2011年02期
相關(guān)碩士學(xué)位論文 前1條
1 吳春廣;GM(1,,1)模型的改進(jìn)與應(yīng)用及其MATLAB實(shí)現(xiàn)[D];華東師范大學(xué);2010年
本文編號:2401204
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2401204.html