基于模式識(shí)別技術(shù)的條形碼識(shí)別方法研究及應(yīng)用
[Abstract]:At present, the material management work of oil field basically depends on the material management system, and the most important link in the material management system is the bar code scanning function. The speed and accuracy of barcode scanning are seriously affected by the weather and oil field environment, which leads to the inefficiency of material management. Especially in the case of a large number of tools, often seriously affect the circulation of tools, resulting in the loss of enterprises. This paper improves barcode recognition technology based on pattern recognition technology and analyzes and solves the problem that barcode image can not be recognized because of tilt noise and dirty pollution. Through simulation and practical test, the design can effectively improve the barcode recognition technology and make the oil field material management more efficient and automatic. The main contents of this paper are as follows: (1) Image tilt correction based on Hough transform: for the scanned skew bar code image, this paper adopts the image tilt correction method based on Hough transform. It can solve the problem that barcode can not be recognized because of image tilt. (2) improved median filter algorithm based on support vector machine: for the noise problem of barcode image, this paper first uses median filter algorithm to deal with barcode image. By using median filtering algorithm to process barcode images, the black and white isolated noise points on barcode images can be removed. Then, aiming at the advantages and disadvantages of median filtering algorithm, the advantages and disadvantages of SVM image filter denoising algorithm and the characteristics of salt and pepper noise, this paper adopts the method based on support vector machine to improve the median filtering algorithm. The simulation results show that the proposed algorithm can eliminate salt and pepper noise more effectively, and the processing results have higher SNR. (3) Ostu algorithm based on adaptive threshold selection. Firstly, Ostu algorithm and Bernsen algorithm are used to process images. According to the actual situation of oil field and comparing the processing effect and running time of the two algorithms, this paper selects Ostu algorithm to deal with barcode image. Then the Ostu algorithm is improved because the running time of Ostu algorithm can not meet the requirement of oil field material management. In this paper, the adaptive threshold selection method is used to improve the Ostu algorithm. The result of the improved algorithm shows that the improved algorithm can speed up the processing time and improve the working efficiency.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE4;TP391.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王瓊;康凱;朱永波;;基于條形碼跟蹤管理系統(tǒng)的模式識(shí)別技術(shù)研究及應(yīng)用[J];自動(dòng)化與儀表;2016年08期
2 靳佳澍;;一種針對(duì)彩色二維碼圖像的二值化方法[J];科技與企業(yè);2016年04期
3 孫茂芬;盧道華;李忠國;王佳;;海上監(jiān)控圖像的海天線及其目標(biāo)區(qū)域提取[J];機(jī)械工程師;2016年02期
4 朱黎輝;李曉寧;;基于多特征組合的球形果蔬智能分選方法[J];計(jì)算機(jī)工程與應(yīng)用;2016年05期
5 馮欣悅;楊秋翔;安雁艷;范建華;楊劍;;基于SVM和小波系數(shù)的圖像去噪算法研究[J];微電子學(xué)與計(jì)算機(jī);2014年08期
6 程懷蒙;張勝業(yè);;基于ε-SVR算法的大地電磁測(cè)深資料去噪[J];地球物理學(xué)進(jìn)展;2014年02期
7 彭濤;曹威;盧明;黃易;趙璐;;基于小波多尺度二值化的銅浮選工況識(shí)別[J];儀器儀表學(xué)報(bào);2014年03期
8 閆麗娟;頡耀文;彌沛峰;劉惠峰;;基于小波的遙感影像薄云去除方法[J];礦山測(cè)量;2013年06期
9 徐曉東;李培林;炊明偉;王崴;馮有前;;一種針對(duì)圖像脈沖噪聲的改進(jìn)中值濾波算法[J];電視技術(shù);2013年19期
10 羅道江;;便攜式手持設(shè)備結(jié)構(gòu)設(shè)計(jì)綜述[J];電子世界;2013年13期
相關(guān)博士學(xué)位論文 前3條
1 孫巧榆;復(fù)雜背景圖像的文本信息提取研究[D];華東師范大學(xué);2012年
2 田延明;語言離散—連續(xù)圖式表征認(rèn)知模式研究[D];上海外國語大學(xué);2012年
3 趙海峰;基于圖的模式識(shí)別及其在計(jì)算機(jī)視覺中的應(yīng)用[D];南京理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 張魯?shù)?智能圖像識(shí)別技術(shù)研究[D];渤海大學(xué);2016年
2 浦遠(yuǎn)強(qiáng);便攜式手持設(shè)備的設(shè)計(jì)與應(yīng)用研究[D];西安建筑科技大學(xué);2015年
3 車怡;基于圖像處理技術(shù)的條形碼識(shí)別系統(tǒng)的研究[D];華北電力大學(xué);2014年
4 董華冰;一維圖像條形碼識(shí)別方法研究[D];華南理工大學(xué);2012年
5 姬飛飛;條碼識(shí)別技術(shù)及其應(yīng)用研究[D];哈爾濱工程大學(xué);2012年
6 張琪;結(jié)合邊緣檢測(cè)的圖像二值化算法[D];吉林大學(xué);2011年
7 龍春琳;基于顏色信息熵與邊緣信息熵的圖像檢索技術(shù)研究[D];西安電子科技大學(xué);2010年
8 喬連芝;基于圖像處理方式定位識(shí)別條形碼[D];華南理工大學(xué);2010年
9 王剛;圖像二值化方法研究及其在監(jiān)控識(shí)別系統(tǒng)中的應(yīng)用[D];湖南大學(xué);2010年
10 韋軼群;基于GPU硬件加速的醫(yī)學(xué)圖像分割研究[D];上海交通大學(xué);2009年
,本文編號(hào):2390212
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2390212.html