基于循環(huán)平移Shearlet變換自適應(yīng)閾值消減微震勘探隨機(jī)噪聲
[Abstract]:With the continuous growth of world oil and gas demand, oil and gas as a non-renewable resource is gradually consumed. The complex unconventional oil and gas reservoir exploitation has become the hot spot of reserve growth. As an unconventional hydraulic fracturing observation signal, microseismic is characterized by weak energy and low signal-to-noise ratio (SNR), and the conventional filtering method is limited. The accuracy of initial arrival pickup and inversion positioning of microseismic signals is seriously affected, and it is difficult to interpret geological structure and develop oil and gas reservoirs. Therefore, improving the signal-to-noise ratio (SNR) of monitoring records is an important step in microseismic data processing. We need to extract useful signals in strong random noise background and effectively reduce random noise in microseismic data. In this paper, the random noise suppression method of microseismic signal is studied, and the adaptive threshold estimation scheme is constructed by combining Shearlet transform and cyclic translation transform. Simulation experiments and actual data processing results show that this method can effectively extract microseismic signals, remove random noise to a large extent and maintain the effective signal amplitude. Shearlet transform is a new multi-scale time-frequency analysis tool, which has the properties of multi-scale, multi-direction and best sparse approximation, that is, reconstruction of useful signals by sparse matrix has high computational efficiency. In recent years, the transform method has been gradually applied in the field of seismic exploration data denoising, and achieved certain results. However, the Shearlet transform method based on threshold has some limitations in the process of microseismic de-noising. 1. The signal energy is weak, the main frequency is high, the signal and noise coincide in the high frequency band, the threshold method is difficult to separate signal and noise. For ground microseismic signals, the current threshold noise reduction methods based on Shearlet transform often assume that the noise is distributed in high frequency band without considering the interference of low frequency band noise to the signal. The traditional threshold-based Shearlet transform denoising method uses a unified threshold in the transform domain, so it is easy to lose part of the effective signal, resulting in energy loss. 4. The traditional Shearlet transform has the process of downsampling, so the transformation lacks shift invariance. Based on the essence of Shearlet transform, the technique of microseismic noise suppression based on Shearlet transform is studied in this paper. This paper analyzes the coefficient distribution characteristics of microseismic data after Shearlet transform, considers the direction and spatial correlation of the signal, makes cyclic translation of the processed data, and makes use of the multi-scale characteristics of Shearlet transform to enhance its translation invariance. The signal is decomposed in multi-scale and multi-direction. According to the difference between microseismic signal and random noise in Shearlet domain, the weight threshold shrinkage scheme based on block principal component analysis (PCA) is established. Finally, the processed spatial array data are superimposed and averaged to enhance the effective signal, to restore the amplitude of the effective signal while reducing the noise, and to realize the recognition of the microseismic signal under the condition of low SNR. Through artificial simulation and actual record processing, it is verified that the proposed adaptive directional threshold Shearlet transform algorithm is superior to the traditional Shearlet transform algorithm in amplitude retention and noise suppression.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE937
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐蔭榮;;微震機(jī)構(gòu)振動(dòng)方程的探討及其圖解[J];鑄造機(jī)械;1978年06期
2 竇林名;多功能一體化微震系統(tǒng)[J];煤礦設(shè)計(jì);1999年06期
3 劉先鋒;張瑞明;;微震波形識(shí)別技術(shù)在監(jiān)測(cè)邊坡巖體中的應(yīng)用[J];山西冶金;2013年06期
4 魏利娜;薛世鵬;周春艷;丁慧哲;李靜;;微震信號(hào)現(xiàn)場(chǎng)監(jiān)測(cè)試驗(yàn)及特征研究[J];河北工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
5 許曉陽;王恩元;許福樂;李忠輝;;煤巖單軸壓縮條件下微震頻譜特征研究[J];應(yīng)用聲學(xué);2010年02期
6 張杰;;凡口礦深部微震信號(hào)辨識(shí)方法研究[J];采礦技術(shù);2009年04期
7 丁學(xué)龍;王恩元;賈迎梅;凌利;楊道偉;;煤巖脹裂破壞過程微震特性試驗(yàn)[J];煤炭科學(xué)技術(shù);2009年08期
8 李許偉;竇林名;蔡武;韓榮軍;胡銀如;;褶皺附近微震活動(dòng)規(guī)律分析[J];煤礦安全;2011年11期
9 趙興柱;;紅透山銅鋅礦微震傳感器布置方案分析[J];有色金屬(礦山部分);2012年05期
10 劉虎;李振中;;微震事件與工作面推進(jìn)關(guān)系研究[J];煤礦開采;2010年06期
相關(guān)會(huì)議論文 前7條
1 李國(guó)營(yíng);劉虎;;唐口礦井受采動(dòng)影響下微震活動(dòng)規(guī)律研究[A];綜采放頂煤技術(shù)理論與實(shí)踐的創(chuàng)新發(fā)展——綜放開采30周年科技論文集[C];2012年
2 王永仁;歐陽振華;孔令海;趙善坤;李曉璐;;不同地質(zhì)條件下微震信號(hào)衰減規(guī)律研究[A];第3屆全國(guó)工程安全與防護(hù)學(xué)術(shù)會(huì)議論文集[C];2012年
3 高峰;呂進(jìn)國(guó);;基于HHT方法的微震信號(hào)時(shí)頻分析[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
4 王鵬;常旭;王一博;王璐琛;;水力壓裂誘發(fā)微震事件的頻譜特征統(tǒng)計(jì)分析[A];中國(guó)地球物理2013——第二十三專題論文集[C];2013年
5 張傳玖;毛學(xué)健;;強(qiáng)沖擊煤層綜采工作面微震活動(dòng)分析研究[A];煤炭開采新理論與新技術(shù)——中國(guó)煤炭學(xué)會(huì)開采專業(yè)委員會(huì)2012年學(xué)術(shù)年會(huì)論文集[C];2012年
6 周勝健;劉超;;采動(dòng)下新莊孜礦62113工作面地質(zhì)預(yù)警微震實(shí)踐[A];2010年度淮南礦業(yè)集團(tuán)煤炭學(xué)會(huì)學(xué)術(shù)交流會(huì)論文匯編(一)·地質(zhì)專業(yè)[C];2010年
7 李學(xué)政;唐云凱;;微震工程檢測(cè)與應(yīng)用技術(shù)[A];國(guó)家安全地球物理叢書(七)——地球物理與核探測(cè)[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 張靜;三峽微震[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2003年
相關(guān)博士學(xué)位論文 前7條
1 黃志平;深埋隧洞開挖卸荷巖爆孕育過程及微震預(yù)警分析[D];東北大學(xué);2015年
2 于洋;深埋隧洞即時(shí)型巖爆孕育過程的微震信息特征分析及分形研究[D];東北大學(xué);2014年
3 楊威;煤巖變形破裂電磁和微震信號(hào)關(guān)聯(lián)響應(yīng)機(jī)理及特征研究[D];中國(guó)礦業(yè)大學(xué)(北京);2014年
4 劉建坡;深井礦山地壓活動(dòng)與微震時(shí)空演化關(guān)系研究[D];東北大學(xué);2011年
5 胡永泉;地面微震資料去噪方法研究[D];西南石油大學(xué);2013年
6 劉超;采動(dòng)煤巖瓦斯動(dòng)力災(zāi)害致災(zāi)機(jī)理及微震預(yù)警方法研究[D];大連理工大學(xué);2011年
7 葉慶東;大別蘇魯?shù)貐^(qū)背景噪聲成像與汶川地震科學(xué)鉆探井孔附近微震定位[D];中國(guó)地震局地球物理研究所;2014年
相關(guān)碩士學(xué)位論文 前10條
1 周莉;基于礦山巖石破裂的微震信號(hào)的檢測(cè)與研究[D];昆明理工大學(xué);2015年
2 趙中流;基于Fermat原理和加速度估計(jì)的微震定位研究[D];吉林大學(xué);2016年
3 李保林;煤礦微震與爆破信號(hào)特征提取及識(shí)別研究[D];中國(guó)礦業(yè)大學(xué);2016年
4 王強(qiáng);巖層破裂微震動(dòng)同步數(shù)據(jù)采集網(wǎng)絡(luò)系統(tǒng)研究[D];江蘇科技大學(xué);2016年
5 樊手;地下洞室圍巖與支護(hù)損傷演化的微震釋放研究[D];西南石油大學(xué);2016年
6 趙海濤;基于循環(huán)平移Shearlet變換自適應(yīng)閾值消減微震勘探隨機(jī)噪聲[D];吉林大學(xué);2017年
7 朱超;微震實(shí)時(shí)在線監(jiān)測(cè)系統(tǒng)的研究與實(shí)現(xiàn)[D];武漢科技大學(xué);2012年
8 商鵬;爆破掘進(jìn)煤巖破裂微震信號(hào)特征研究[D];河南理工大學(xué);2014年
9 景林波;煤礦微震信號(hào)特征及傳播規(guī)律研究[D];中國(guó)礦業(yè)大學(xué);2014年
10 劉佳;地下礦山實(shí)時(shí)信號(hào)的微震震源分析[D];武漢科技大學(xué);2013年
,本文編號(hào):2368769
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2368769.html