生物質(zhì)熱化學(xué)轉(zhuǎn)化所得生物油的催化改質(zhì)
[Abstract]:In this paper, octanoic acid was used as a model compound of bio-oil from biomass pyrolysis, and the effects of catalytic hydrogenation and catalytic esterification on the deoxidation of octanoic acid were discussed. The product is heptane produced by decarbonylation of octanaldehyde to octanaldehyde in 69.68% yield, and a small amount of light hydrocarbons, octane, octanol, octanoate and other products are produced in the reaction process. The yields of light hydrocarbons, heptane, octene, octanaldehyde, octanol and octyl octoate were 2.31%, 10.67%, 0.99%, 3.56%, 4.89% and 1.10% respectively. ZrO2 supports were converted from cubic to monoclinic by increasing the acidity of the catalysts, increasing the H2 adsorption capacity of the catalysts. All the above actions were conducive to improving the catalytic activity of the nickel-based catalysts and enhancing the adsorption capacity of the catalysts for H2, resulting in the hydrogenation of octanol to octanol and the dehydration of octanol to octene and octene to octene. For the catalytic esterification of octanoic acid, methanol is used as alcohol promoter. When the reaction temperature is 160oC and the molar ratio of methanol to octanoic acid is 4.5:1, the catalytic effect of SO_4~ (2-) / Al_2O_3 from 550oC calcination is the best, and the conversion of octanoic acid is 92.56% and the target product-Al_2O_3 is the best. The highest yield of methyl octanoate is 89.08%. Under the same conditions, when the catalyst is SO_4 ~ (2-) / Al_2O_3-SiO_2 (Al/Si molar ratio is 5:1) modified by SiO_2 doping, the conversion of octanoic acid increases to 99.11% as SAS-5, and the yield of methyl octanoate increases to 99.07% without any by-products. A series of characterizations, such as adsorption-desorption, XRD, IR, TG, in-situ pyridine infrared adsorption, etc., show that doping SiO2 can significantly increase the specific surface area of the catalyst, inhibit the formation of Al2 (SO4) 3 crystal form, and facilitate the formation of SO42 - on the surface of the catalyst, enhance the acidity of the catalyst; in addition, SiO2 doping is also conducive to the enhancement of SO42 - and alumina. The stability of the SAS-5 catalyst was enhanced and its service life was prolonged by the interaction. The activity of the SAS-5 catalyst remained high after 9 cycles. The loss of acid sites is also the main reason for catalyst deactivation.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE667
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚天偉;俞建良;張栩;;生物煉制技術(shù)研究新進(jìn)展[J];化工進(jìn)展;2011年01期
2 翟德偉;樂英紅;華偉明;高滋;;Al_2O_3摻雜SO_4~(2-)/SnO_2固體酸催化劑上的酯化和酯交換反應(yīng)[J];物理化學(xué)學(xué)報;2010年07期
3 王琦;駱仲泱;王樹榮;岑可法;;生物質(zhì)快速熱裂解制取高品位液體燃料[J];浙江大學(xué)學(xué)報(工學(xué)版);2010年05期
4 鄭小明;樓輝;;生物質(zhì)熱解油品位催化提升的思考和初步進(jìn)展[J];催化學(xué)報;2009年08期
5 李曉娟;常建民;范東斌;;生物質(zhì)快速熱解技術(shù)現(xiàn)狀及展望[J];林業(yè)機(jī)械與木工設(shè)備;2009年01期
6 吳英艷;薛群山;;生物質(zhì)熱裂解液化技術(shù)的發(fā)展概況[J];化工科技市場;2008年07期
7 遲姚玲;丁福臣;易玉峰;冀德坤;王虹;;生物質(zhì)能的開發(fā)利用[J];北京石油化工學(xué)院學(xué)報;2008年02期
8 廖益強;黃彪;陸則堅;;生物質(zhì)資源熱化學(xué)轉(zhuǎn)化技術(shù)研究現(xiàn)狀[J];生物質(zhì)化學(xué)工程;2008年02期
9 陸強;朱錫鋒;李全新;郭慶祥;朱清時;;生物質(zhì)快速熱解制備液體燃料[J];化學(xué)進(jìn)展;2007年Z2期
10 陳曦;韓志群;孔繁華;胡徐騰;;生物質(zhì)能源的開發(fā)與利用[J];化學(xué)進(jìn)展;2007年Z2期
相關(guān)博士學(xué)位論文 前1條
1 姚燕;生物油的分餾及品位提升試驗研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 李繼紅;生物質(zhì)焦油及其餾分的熱動力學(xué)研究[D];河南農(nóng)業(yè)大學(xué);2005年
,本文編號:2223661
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2223661.html