天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 石油論文 >

組合管中段塞流耗散機(jī)理研究

發(fā)布時間:2018-08-28 07:47
【摘要】:柱狀氣液旋流分離器入口整流管主要通過擴(kuò)徑、下傾等幾何結(jié)構(gòu)的變化將段塞來流轉(zhuǎn)化為分層流動來消除液塞對分離器旋流段的沖擊,改善分離效果。本文對不同結(jié)構(gòu)入口整流管段塞流動參數(shù)的沿程變化進(jìn)行了針對性的模擬與實驗研究。借助于Fluent模擬器的自定義接口(udf)利用一維穩(wěn)態(tài)段塞流動模型定義瞬態(tài)的段塞流動初始條件并基于VOF多相流模型發(fā)展了一種段塞流動模擬的方法,對入口整流管中的液塞耗散規(guī)律進(jìn)行了模擬研究。結(jié)果表明這一方法較好地模擬了柱狀氣液旋流分離器入口整流管中的液塞耗散過程。由模擬結(jié)果可以看出在一定范圍內(nèi)下傾角度θ與擴(kuò)徑比K的增大都有助于增強(qiáng)下傾管中的液塞耗散效果,其中擴(kuò)徑比K的增大對液塞耗散效果的增強(qiáng)作用占主要地位;在螺旋曲率D較大時(實際應(yīng)用中較大)由于離心力的作用較小螺旋下傾管內(nèi)的耗散規(guī)律與下傾直管基本相同,在相同耗散距離下螺旋下傾管出口持液率波動曲線更加平滑,整流效果較好;段塞流動入口會對旋流段的流場造成強(qiáng)烈沖擊;下傾角度的增加會在很大程度上抑制氣相空間的液相攜帶,同時提高了氣相空間切向速度,這都有利于提高分離效果;但下傾角度的增加液加劇了氣液界面氣液兩相的混合,實際應(yīng)用中會造成采出液強(qiáng)烈的二次乳化。實驗研究了段塞流特征參數(shù)在入口整流管中的沿程變化規(guī)律,整流管入口與下傾管入口的壓力波動規(guī)律受立管段的影響隨折算速度的變化表現(xiàn)出各異的規(guī)律;我們發(fā)現(xiàn)在立管段會發(fā)生液塞長度LS的增加,在立管頂部達(dá)到最大值,進(jìn)入下傾管后,可以近似認(rèn)為液塞長度LS的減小呈現(xiàn)出線性關(guān)系;液塞速度US在立管段會減小,在立管頂部達(dá)到最小值,進(jìn)入下傾管后,可以近似認(rèn)為液塞速度US的增加呈現(xiàn)出線性關(guān)系;本結(jié)構(gòu)下傾管中的段塞流動與充分發(fā)展段塞流動不同之處在于液膜區(qū)較薄,液塞持液率明顯較低且形狀不規(guī)則,液塞區(qū)與液膜區(qū)在沿下傾管流動過程中會得到一定程度的恢復(fù),液塞持液率明顯升高。實驗研究了整流管幾何結(jié)構(gòu)(下傾角度θ、擴(kuò)徑比K、緩沖長度LK)對液塞耗散效果的影響,擴(kuò)徑比K是影響段塞流耗散效果最為重要的一個參數(shù),擴(kuò)徑比K的增大可以有效地促使液塞在較短的下傾距離上很快地耗散,容易發(fā)生液塞耗散的區(qū)域集中于流型圖中段塞流區(qū)域的左上角和右下角;下傾角度θ的增大有利于液塞的耗散,隨著下傾角度θ的增加,下傾管中的液塞速度US呈現(xiàn)出增大的趨勢;在傾斜角度θ較大時液塞長度LS的減小受傾斜角度θ的影響較小,在傾斜角度θ=-21°~-40°范圍內(nèi)液塞耗散速度基本相同;在傾斜角度θ范圍為-21°~-40°時隨著傾斜角度θ的增加,氣液界面趨于平滑;擴(kuò)徑位置對整流效果的影響較小,緩沖長度LK的改變對提高液塞耗散效果的作用不明顯。
[Abstract]:The inlet rectifier of the columnar gas-liquid swirl separator transforms the slug flow into a stratified flow by changing the geometric structure such as expanding diameter and downward inclination to eliminate the impact of the slug on the cyclone section of the separator and improve the separation effect. In this paper, the flow parameters of slug in the inlet rectifier of different structures are simulated and experimentally studied. With the help of (udf), a custom interface of Fluent simulator, a method for simulating slug flow is developed by using one-dimensional steady slug flow model to define the initial conditions of transient slug flow and based on VOF multiphase flow model. The dissipation law of liquid plug in inlet rectifier pipe is simulated and studied. The results show that this method can well simulate the slug dissipation process in the inlet rectifier of the columnar gas-liquid cyclone separator. From the simulation results, it can be seen that the increase of the downdip angle 胃 and the expanding diameter ratio K in a certain range is helpful to enhance the liquid slug dissipation effect in the downdip pipe, in which the increasing of the diffusing diameter ratio K plays an important role in enhancing the liquid slug dissipation effect. When the spiral curvature D is larger (in practical application), the dissipation law in the downdip pipe is basically the same as that in the downdip pipe because of the smaller centrifugal force, and the fluctuation curve of the liquid holdup at the outlet of the helical downdip tube is smoother at the same dissipation distance. The rectifying effect is good, the slug inlet will have a strong impact on the flow field of the swirl section, and the increase of the downdip angle will greatly inhibit the liquid phase transport in the gas phase space, and increase the tangential velocity of the gas phase space at the same time. All of these are helpful to improve the separation effect, but the increase of downdip angle intensifies the gas-liquid two-phase mixing at the gas-liquid interface, which will result in the strong secondary emulsification of the produced liquid in practical application. The characteristic parameters of slug flow in the inlet rectifier are studied experimentally. The pressure fluctuation law of the inlet of the rectifier tube and the inlet of the downdip tube is different from the change of the conversion velocity by the influence of the vertical pipe section. We find that the length of liquid slug LS increases in the vertical section and reaches the maximum at the top of the riser. After entering the downdip pipe, it can be approximately assumed that the decrease of the length of liquid plug LS shows a linear relationship, and the liquid plug velocity US will decrease in the vertical section. At the top of the riser, the minimum value is reached, and after entering the downdip pipe, it can be approximately assumed that the increase of the slug velocity US shows a linear relationship, and the difference between the slug flow in the downdip pipe and the fully developed slug flow is that the liquid film area is relatively thin. The liquid holdup of the plug is obviously lower and the shape is irregular. The liquid slug area and the liquid film area will recover to a certain extent during the flow along the downdip pipe, and the liquid slug holdup will increase obviously. The effect of the geometry of rectifier tube (dip angle 胃, radius ratio K, buffer length LK) on the dissipation effect of liquid slug is studied experimentally. The ratio K is the most important parameter affecting the effect of slug flow dissipation. The increase of K can effectively cause the liquid plug to dissipate rapidly at a short downdip distance, and the area prone to liquid slug dissipation is concentrated in the upper left and lower right corner of the slug area in the flow pattern diagram. The increase of down dip angle 胃 is beneficial to the dissipation of liquid plug. With the increase of down dip angle 胃, the US of liquid plug velocity in downdip pipe tends to increase, and the decrease of liquid plug length LS is less affected by inclination angle 胃 when the inclination angle 胃 is larger. In the range of inclination angle 胃 -21 擄-40 擄, the dissipation velocity of liquid plug is basically the same, when the angle 胃 is -21 擄-40 擄, the gas-liquid interface tends to smooth with the increase of inclination angle 胃, and the influence of the expanding position on the effect of rectifier is small. The change of buffer length LK has no obvious effect on improving the dissipation of liquid plug.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE832

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 王鑫,郭烈錦;水平管氣液段塞流流量瞬變特性模擬研究[J];工程熱物理學(xué)報;2004年05期

2 曹學(xué)文,林宗虎,黃慶宣,寇杰;新型管柱式氣液旋流分離器[J];天然氣工業(yè);2002年02期

相關(guān)博士學(xué)位論文 前1條

1 羅小明;氣液兩相和油氣水三相段塞流流動特性研究[D];中國石油大學(xué);2007年



本文編號:2208749

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2208749.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶99972***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com