射吸式液動沖擊器的優(yōu)化設(shè)計
[Abstract]:In drilling process, drilling speed plays a decisive role in shortening drilling cycle. Rotary percussive drilling can be realized by using suction hydraulic impactor, which can greatly improve the drilling speed, shorten the drilling time and reduce the investment of funds. The injection-suction hydraulic impactor can transform the pressure energy of drilling fluid into mechanical energy. Under the combined action of static pressure of drill bit, rotary cutting and vertical impact dynamic load, rapid and efficient rock breaking can be realized. The main research work of this paper is as follows: according to the working principle of hydraulic impactor, the advantages and disadvantages of different kinds of hydraulic impactor are summarized, and the relatively few torsion impactors are simply analyzed. Based on the analysis of the working process of the impactor, the dynamic equation is established with the piston hammer as the main object of study, and the equations of motion and displacement are derived, and the relations among the parameters are found. The equipment and process of indoor test are introduced. At the end of stroke, the suction hydraulic impactor opens the channel and forms the pressure difference (the lower cavity pressure is greater than the upper cavity pressure). Pro/E software is used to set up the flow channel solid model at the end of stroke, and Gambit is used to mesh and import it into Fluent software for analysis. The variation law of pressure difference is studied by changing nozzle diameter, throttle ring diameter and flow rate by single variable method. It is concluded that the larger flow rate of nozzle and throttle ring with smaller inner diameter can form greater pressure difference. The flow field of the nozzle with conic and cubic curves in the upper cavity is analyzed. For the secondary busbar nozzle, the pressure of the upper cavity flow field is lower when the parameter 胃 is relatively small, and the static pressure of the nozzle D (胃 ~ (30 擄) is the lowest at the upper end of the valve and the upper end of the piston. The above analysis and research is helpful to improve the performance of the impactor.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE921.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 菅志軍,張玉霖,王茂森,戴樹林;沖擊旋轉(zhuǎn)鉆進(jìn)技術(shù)新發(fā)展[J];地質(zhì)與勘探;2003年03期
2 張祖培;蔣榮慶;;蘇聯(lián)液動沖擊回轉(zhuǎn)鉆進(jìn)近況[J];國外地質(zhì)勘探技術(shù);1984年04期
3 趙洪激;彭高華;;閥式正作用液力沖擊鉆具的研究[J];石油礦場機(jī)械;1992年02期
4 陳朝達(dá),高建強(qiáng),郝建華,吳秀娟;射吸式雙作用油井深井沖擊器設(shè)計[J];石油礦場機(jī)械;1999年06期
5 菅志軍,張文華,劉國輝,崔穎;石油鉆井用液動沖擊器研究現(xiàn)狀及發(fā)展趨勢[J];石油機(jī)械;2001年11期
6 蔣宏偉;黃成;王克雄;翟應(yīng)虎;倪瑞慶;;射吸式液動沖擊器內(nèi)部流場數(shù)值模擬研究[J];石油機(jī)械;2007年09期
7 李國民;雙作用液動沖擊器仿真電算數(shù)學(xué)模型[J];探礦工程(巖土鉆掘工程);1997年04期
8 陳晶晶;陳家旺;殷琨;;沖擊器射流元件內(nèi)部流場CFD模擬仿真分析[J];探礦工程(巖土鉆掘工程);2008年12期
9 袁光杰,姚振強(qiáng),黃萬志,陳平;石油背壓式液動沖擊器動力學(xué)模型的建立[J];天然氣工業(yè);2003年04期
相關(guān)博士學(xué)位論文 前1條
1 陳家旺;射流式液動沖擊器仿真計算與實驗研究[D];吉林大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 梁家瑋;液動沖擊器測試實驗臺設(shè)計和研建[D];中國地質(zhì)大學(xué)(北京);2011年
2 胡玉仙;基于FLUENT軟件的泵站進(jìn)出水流道流動模擬研究[D];武漢大學(xué);2004年
3 鹿勝玉;基于FLUENT的抽油泵泵效的仿真研究與優(yōu)化[D];山東大學(xué);2008年
4 梁翠平;基于CFD的液壓沖擊器流場的仿真與研究[D];上海工程技術(shù)大學(xué);2011年
5 李博;閥式雙作用液動沖擊器的仿真[D];中國地質(zhì)大學(xué)(北京);2013年
6 陳克鑫;基于FLUENT的固井單向閥流場仿真與性能分析[D];哈爾濱工業(yè)大學(xué);2012年
7 曹寒冰;基于FLUENT的前混合磨料射流噴嘴流場的數(shù)值模擬[D];安徽理工大學(xué);2013年
8 臧鵬;液動沖擊鉆具數(shù)字化設(shè)計與仿真研究[D];西安石油大學(xué);2013年
9 毛子強(qiáng);基于FLUENT的外嚙合斜齒輪泵內(nèi)部流場的仿真與分析[D];蘭州理工大學(xué);2014年
10 謝天;高頻軸向液動沖擊器破巖機(jī)理及試驗分析[D];東北石油大學(xué);2014年
,本文編號:2206198
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2206198.html