油田常用聚合物的清潔氧化降解研究
[Abstract]:Nowadays, most oilfields at home and abroad use a large number of polymers in the process of oil production, including hydroxypropyl guar gum, polyacrylamide and carboxymethyl cellulose, resulting in high polymer content in the produced sewage of most oilfields. The polymer concentration in the sewage of some oilfields is as high as 1000mg/L, and the polymer content exceeds the standard seriously. Fenton oxidation is the main method of wastewater treatment in oilfield. The advantages of this method are high oxidation activity and thorough oxidative degradation of polymers. The products of oxidative degradation are non-toxic, biodegradable and small molecular substances, which do not cause secondary pollution. The cost of drugs needed in the treatment process is low. The disadvantage of this method is that Fenton oxidation process can only exert its efficiency under the condition of pH 2.0~3.0, and the reaction conditions are more stringent, while oilfield sewage is generally alkaline, so it is necessary to adjust the pH value of the sewage to 2.0~3.0 in the process of treating oilfield sewage, and the treated sewage also needs to return the pH value. Therefore, the whole process of oilfield sewage treatment needs to consume a lot of acid and alkali. A typical Fenton system is in acidic environment, in which Fe~ (2+) catalyzes the rapid decomposition of H_2O_2 to produce a large number of hydroxyl radicals with high oxidation activity. OH can be used to produce most organic compounds. However, the application of this system is very complicated, which restricts its application. In order to broaden the application range of Fenton method, a series of metal complex catalysts were prepared to catalyze the oxidation and degradation of H_2O_2 in oilfields at high pH. In this paper, a series of metal complex catalysts were synthesized with the viscosity of hydroxypropyl guar gum as the evaluation index, and five catalysts with better catalytic effect on hydrogen peroxide were screened out by the method of viscosity evaluation. The optimum application conditions of the catalysts were screened and characterized by UV spectroscopy to explore the mechanism of their better catalytic effect. The catalysts were used to catalyze the oxidation of three commonly used polymers in oilfields under the optimum conditions. The effects of the catalysts on COD removal and viscosity reduction were compared and analyzed. The main results obtained are as follows: (1) Five catalysts, EDTA-Fe (I I), TEA-Co, cysteine-Fe (I I), sodium tartrate-Fe (I I) and o-phenanthroline-Cu, have been screened for the oxidation of hydroxypropyl guar gum by H_2O_2; (2) The optimum conditions for the use of these catalysts are as follows: EDTA-Fe (I I). II) The ratio of metal ions to ligands is 1:1, the amount of hydrogen peroxide is 10% of hydroxypropyl guar gum, the amount of catalyst is 10% of hydrogen peroxide, the temperature is 45 C, the pH is 9, the ratio of metal ions to ligands is 1:3, the amount of hydrogen peroxide is 10% of hydroxypropyl guar gum, and the amount of catalyst is 1% of hydrogen peroxide. The ratio of cysteine to Fe (I I) metal ions and ligands is 1:1, the amount of hydrogen peroxide is 10% of hydroxypropyl guar gum, the amount of catalyst is 10% of hydrogen peroxide, the temperature is 45 C and the pH is 7, the ratio of metal ions to ligands of sodium tartrate to Fe (I I) is 1:3, and the amount of hydrogen peroxide is 10% of hydroxypropyl guar gum. Catalyst dosage is 5% of hydrogen peroxide, temperature is 45 C, pH is 11; metal ion and ligand ratio of o-phenanthroline-Cu is 1:3, hydrogen peroxide dosage is 10% of hydroxypropyl guar gum, catalyst dosage is 10% of hydrogen peroxide, temperature is 45 C, pH is 11; (3) The five metal complexes are controlled respectively by using the selected catalysts. Under the optimum conditions, hydroxypropyl guar gum, PAM and CMC were used to catalyze the oxidation of H_2O_2. EDTA-Fe (I I) and o-phenanthroline-Cu were used to catalyze the oxidation of H_2O_2 to degrade the three polymers. The removal rates of COD were all above 99%, tetraethylenepentamine-Co, cysteine-Fe (I I) and sodium tartrate-Fe (I I). (4) UV and IR spectra showed that metal ions and ligands coordinated to form complexes, which effectively explained the reasons of the better catalytic effect of the catalysts.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE39
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ?》;李惠;楊志祥;彭勇;;液相空氣氧化降解聚對(duì)苯二甲酸乙二醇酯研究[J];浙江科技學(xué)院學(xué)報(bào);2008年03期
2 唐瓊;成英;熊俊如;蔣文舉;;氣相介質(zhì)阻擋放電氧化降解酸性紅88的機(jī)理[J];環(huán)境工程學(xué)報(bào);2011年12期
3 何智敏;姜理英;陳建孟;張璐;;二氧化錳氧化降解土霉素的動(dòng)力學(xué)研究[J];水處理技術(shù);2013年08期
4 王德印;聚乙烯醇氧化降解新工藝[J];塑料工業(yè);1980年02期
5 張璐;姜理英;陳建孟;何智敏;;生物氧化錳對(duì)水體中17β-雌二醇的氧化降解[J];水處理技術(shù);2012年10期
6 陳高;趙玲;董元華;;二氧化錳氧化降解金霉素的動(dòng)力學(xué)研究[J];環(huán)境科學(xué);2009年09期
7 ?》;李惠;楊志祥;彭勇;;液相氧化降解聚乙烯和聚丙烯的研究[J];浙江科技學(xué)院學(xué)報(bào);2008年02期
8 王兆崴;薛建軍;孔令國;凌世盛;楊慧;黃明喜;;單陽膜氧化降解樂果廢水及動(dòng)力學(xué)分析[J];水處理技術(shù);2010年12期
9 戴俊;王政錦;宋會(huì)磊;;亞甲藍(lán)分光光度法測(cè)定氧化降解瓦斯的羥基自由基[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
10 朱麟勇,常志英,李妙貞,王爾鑒;部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅰ.溫度的影響[J];高分子材料科學(xué)與工程;2000年01期
相關(guān)會(huì)議論文 前8條
1 劉承帥;張麗佳;李芳柏;;錳氧化物界面磺胺嘧啶的氧化降解動(dòng)力學(xué)與其物理化學(xué)性質(zhì)的相關(guān)性研究[A];第五屆全國環(huán)境化學(xué)大會(huì)摘要集[C];2009年
2 邱凱;陳馨;劉建偉;王亞寧;魏清榮;萬昌秀;;牛心包體外氧化降解機(jī)理及規(guī)律初探[A];第九屆全國生物材料學(xué)術(shù)會(huì)議(CBMS-9)論文集[C];2002年
3 祝欣;丁浩然;龍濤;林玉鎖;王磊;馮艷紅;萬金忠;;活化過硫酸鈉對(duì)乙烯氯化物的氧化降解[A];2013中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五卷)[C];2013年
4 任廣萌;孫德智;;UV/H_2O_2/O_3氧化降解含聚丙烯酰胺廢水的研究[A];中國精細(xì)化工協(xié)會(huì)第一屆水處理化學(xué)品行業(yè)年會(huì)論文集[C];2005年
5 蘇靜;林海波;劉德臣;文衍宣;;有機(jī)物在活性陽極上直接電氧化降解的動(dòng)力學(xué)研究[A];第六屆全國環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
6 王楠;朱麗華;陸曉華;唐和清;;納米鐵氧化物多相催化H_2O_2氧化降解有機(jī)污染物[A];第六屆全國環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
7 王楠;王明瓊;朱麗華;王大力;唐和清;;超聲強(qiáng)化納米Fe_3O_4類酶催化H_2O_2氧化降解RhB[A];持久性有機(jī)污染物論壇2009暨第四屆持久性有機(jī)污染物全國學(xué)術(shù)研討會(huì)論文集[C];2009年
8 吳保國;馮春華;韋朝海;;微生物陽極強(qiáng)化氧化降解苯酚的機(jī)制研究[A];第六屆全國環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 王風(fēng)林;揭秘PE-Xa 管過早嚴(yán)重氧化降解的原因[N];中國建設(shè)報(bào);2012年
2 陳斌;二氧化碳回收新技術(shù)有望推廣[N];中國化工報(bào);2003年
相關(guān)博士學(xué)位論文 前7條
1 韓東暉;基于有機(jī)酸絡(luò)合鐵離子活化過硫酸鹽技術(shù)氧化降解有機(jī)污染物的研究[D];華南理工大學(xué);2015年
2 孫延慧;典型有機(jī)污染物在大氣中的氧化機(jī)理研究[D];山東大學(xué);2015年
3 張若純;高級(jí)氧化降解尿液及污水中若干種藥物類污染物的研究[D];天津大學(xué);2015年
4 黃愛珍;十溴聯(lián)苯醚的氧化降解研究[D];華中科技大學(xué);2015年
5 龐素艷;鐵錳催化H_2O_2、KHSO_5、KMnO_4氧化降解酚類化合物的效能與機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2011年
6 王家印;KYPAM聚合物的降解和成膠性質(zhì)的研究及現(xiàn)場(chǎng)應(yīng)用[D];西南石油學(xué)院;2005年
7 劉迎凱;經(jīng)RAFT聚合制備PEG聚合物、生物分子復(fù)合物及其性能的研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 楊朋威;油田常用聚合物的清潔氧化降解研究[D];西安石油大學(xué);2017年
2 譚友丹;堿木質(zhì)素氧化降解制備單酚類化合物的研究[D];華南理工大學(xué);2015年
3 馮家豪;次氯酸鈉氧化降解水楊酸的反應(yīng)研究[D];河南師范大學(xué);2015年
4 王亞男;木質(zhì)素在三氮唑基離子液體體系下的溶解和氧化降解研究[D];青島科技大學(xué);2016年
5 張銘輝;次氯酸鈉氧化降解水中吲哚美辛的研究[D];廣東工業(yè)大學(xué);2016年
6 喬旭東;臭氧-紫外光-超聲波協(xié)同作用氧化降解苯酚廢水的研究[D];天津理工大學(xué);2016年
7 蔣超金;鈦基SnO_2修飾電極電氧化降解PFOA、PFOS廢水的研究[D];深圳大學(xué);2016年
8 朱應(yīng)良;基于電化學(xué)過硫酸鹽技術(shù)氧化降解有機(jī)污染物的研究[D];華南理工大學(xué);2016年
9 季虹;生物氧化錳的形成及其對(duì)典型環(huán)境雌激素的氧化降解[D];浙江工業(yè)大學(xué);2011年
10 黃成;二氧化錳氧化降解典型環(huán)境雌激素的行為研究[D];浙江工業(yè)大學(xué);2009年
,本文編號(hào):2183755
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2183755.html