天然氣井產能方程研究
[Abstract]:In this paper, the mathematical model of gas unstable seepage is analyzed. The nonlinear natural gas seepage equation is simplified to linear equation by using quasi pressure function and quasi time function, and the unsteady seepage equation is simplified to steady state equation by using the characteristic of "quasi steady state" stage. The productivity equation of natural gas well is obtained by solving the steady-state equation. Finally, the productivity equation is analyzed and calculated, and the other three improved gas well productivity equations are analyzed and compared. According to the definition of quasi function, this paper gives the calculation methods and results of the pseudo pressure function, the general pseudo time function and the material balance pseudo time function of conventional reservoir, pressure sensitive reservoir and general pseudo time function. The pseudo pressure function curve, pressure sensitive pseudo pressure function curve, recovery degree and physical property parameter (渭 gcg) curve and extraction degree and quasi time function curve are shown in the Cartesian coordinate diagram. In view of the unstable percolation model of eccentric gas wells in circular homogeneous gas reservoirs, Laplace transform and Bessel function addition theorem are used to solve the problem, and then the late quasi-steady productivity equation is obtained by asymptotic analysis, and the effect of eccentricity on gas well productivity is calculated and analyzed. The calculation results show that the existence of eccentricity makes the boundary effect advance, the duration of plane radial flow is relatively shorter, and the dimensionless pressure derivative produces upwarping at the late stage, which is similar to the effect of a single linear fault, but it is different in nature. For a given reservoir, the production decline of the well with large eccentricity is relatively fast, and under the condition of elastic exploitation, the radial flow line can not be produced on the pressure derivative curve. The elastic production of wells with large eccentricity in the middle and late stage of quasi-steady production is small, but relatively large at the last stage. In view of the unstable percolation model of rectangular homogeneous pressure-sensitive gas reservoir, the analytical solution of point source function combined with Newman product method is given. By redefining the pressure-sensitive quasi-pressure function and pressure-sensitive pseudo-time factor, The late quasi steady state productivity equation is given by asymptotic analysis. The calculation results show that with the increase of permeability sensitivity, the wellbore pressure decreases and the well production decreases with the constant flow pressure production, which indicates that the decrease of permeability leads to the relative increase of percolation resistance. The results of this paper can be used for productivity analysis and prediction, and provide basic data for the production scheme design of natural gas wells.
【學位授予單位】:中國地質大學(北京)
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE328
【相似文獻】
相關期刊論文 前10條
1 茍宏剛;趙繼承;秦志保;常勇峰;;二項式產能方程系數(shù)異常情況(B小于零)分析[J];新疆石油地質;2006年02期
2 胥洪成;陳建軍;萬玉金;楊依超;;一點法產能方程在氣藏開發(fā)中的應用[J];石油天然氣學報;2007年03期
3 張合文;馮其紅;鄢雪梅;;氣水兩相流二項式產能方程研究[J];斷塊油氣田;2008年06期
4 藤賽男;梁景偉;李元生;張慶輝;;異常高壓氣藏常規(guī)產能方程評價方法研究[J];油氣井測試;2011年06期
5 何順利,鄭祥克;致密儲集層近井區(qū)堵塞帶的產能方程[J];石油勘探與開發(fā);2003年05期
6 羅銀富,王怒濤,黃炳光;一種確定油井二項式產能方程的簡單方法[J];新疆石油地質;2005年02期
7 潘昭才;孫雷;陽廣龍;吳文濤;孫紅海;肖云;馮鵬洲;;氣井二項式與指數(shù)式產能方程偏差分析[J];油氣井測試;2007年04期
8 李樂忠;李相方;何東博;石軍太;李根;;蘇里格氣田橢圓狀孤立砂體產能方程的建立[J];天然氣工業(yè);2009年04期
9 郭春華;周文;馮文光;楊宇;呂新東;;四川河壩異常高壓氣藏的產能方程及其計算[J];天然氣工業(yè);2009年06期
10 李元生;李相方;藤賽男;張慶輝;張磊;王威;;非均質氣藏考慮壓力計位置的產能方程校正方法研究[J];油氣藏評價與開發(fā);2011年06期
相關會議論文 前1條
1 宋向華;茍宏剛;蒲春生;王成俊;;修正等時試井產能方程系數(shù)方法研究[A];第九屆全國滲流力學學術討論會論文集(二)[C];2007年
相關碩士學位論文 前5條
1 韓坤宏;天然氣井產能方程研究[D];中國地質大學(北京);2015年
2 王洪偉;氣水層穩(wěn)定產能方程計算方法研究[D];大慶石油學院;2009年
3 羅天雨;異常高壓油藏注采井單井產能方程研究[D];西南石油學院;2003年
4 趙洪濤;徑向多分支鉆孔技術在油藏開發(fā)中的應用與研究[D];中國石油大學(華東);2012年
5 楊冬玉;蘇里格氣田叢式井產量劈分及合理確定單井產量的方法研究[D];西安石油大學;2012年
,本文編號:2173908
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2173908.html