鹽巖非線性流變性態(tài)及地下復(fù)雜溶腔變形數(shù)值分析
[Abstract]:In view of the large number of salt rock layers in Pingdingshan salt field, the single layer thickness is thin and the mudstone interlayer is many, the equivalent composite element is established to replace the interbedded salt rock. The three-dimensional numerical simulation of the underground cavity in the Ma Zhuang coalfield is studied by ABAQUS software. The nonlinear rheological behavior of surrounding rock in the surrounding plastic zone and the volume reduction of the cavity are discussed under different internal pressure. The results show that: (1) the equivalent composite element has good numerical stability in the steady state of creep, and the mudstone can effectively limit the scope of the viscoplastic zone and the development of the displacement of the surrounding rock to the cave. (2) under the confining pressure (8 MPa), the interbedded salt rock unit has the characteristics of the linear small deformation, the volume contraction rate of the cavity and the duration of the creep. The minimum values are 3% and 2.5 A, respectively. With the increase of internal pressure (8~12 MPa), the interbedded salt rock unit begins to show nonlinear creep, but after a short time (2.5 A), the volume contraction rate is gradually stable to a small value, about 3.5%. With the rapid decrease of the internal pressure (less than 4 MPa), the surrounding rock salt rock gradually presents nonlinear large deformation characteristics. The steady creep time increases, the creep rate increases, and the creep of the surrounding rock increases steadily after 5 a. (3) the viscosity coefficient in the surrounding rock of the plastic zone increases with time, reflecting the more stable deformation trend of the interbedded salt rock in the process of gas storage operation. Therefore, the gas storage pressure should be controlled in a reasonable range (4~12 MPa), especially in the actual operation. It is necessary to reduce the operating time of the storage under the smaller internal pressure.
【作者單位】: 鄭州大學(xué)水利與環(huán)境學(xué)院;河南省煤田地質(zhì)局資源環(huán)境調(diào)查中心;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(41272339)
【分類號(hào)】:TE972.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 姜德義,任松,劉新榮,郭微;巖鹽溶腔穩(wěn)定性控制研究[J];中國(guó)井礦鹽;2005年03期
2 愪保平;徐素國(guó);趙陽(yáng)升;;鹽巖溶腔油氣儲(chǔ)庫(kù)建造研究[J];山西煤炭;2006年01期
3 姜德義,任松,劉新榮,劉?h;巖鹽溶腔頂板穩(wěn)定性突變理論分析[J];巖土力學(xué);2005年07期
4 宋傳亮;譚羽非;;注采與儲(chǔ)存過(guò)程儲(chǔ)油鹽穴溶腔內(nèi)溫度變化研究[J];哈爾濱商業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
5 劉正和;;鹽層內(nèi)油氣儲(chǔ)庫(kù)建造穩(wěn)定性建模分析[J];科技情報(bào)開(kāi)發(fā)與經(jīng)濟(jì);2007年16期
6 陽(yáng)佳中,楊駿六;巖鹽溶腔滲透率研究的一些進(jìn)展[J];西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
7 班凡生;袁光杰;趙志成;;鹽穴儲(chǔ)氣庫(kù)溶腔夾層應(yīng)力分布規(guī)律[J];科技導(dǎo)報(bào);2014年16期
相關(guān)會(huì)議論文 前1條
1 李龍;楊海軍;劉玉剛;方亮;;金壇鹽穴儲(chǔ)氣庫(kù)新溶腔井注氣排鹵情況分析[A];青年人才與石化產(chǎn)業(yè)創(chuàng)新發(fā)展——第七屆寧夏青年科學(xué)家論壇論文集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 郝鐵生;層狀鹽巖水平儲(chǔ)庫(kù)破壞機(jī)理及穩(wěn)定性研究[D];太原理工大學(xué);2016年
2 萬(wàn)玉金;鹽層儲(chǔ)氣庫(kù)溶腔形狀控制模擬技術(shù)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2005年
相關(guān)碩士學(xué)位論文 前4條
1 王英杰;巖鹽儲(chǔ)氣庫(kù)溶腔模型及其建腔工藝研究[D];武漢輕工大學(xué);2014年
2 岳廣義;鹽巖溶腔水平儲(chǔ)庫(kù)溶解建造過(guò)程實(shí)驗(yàn)與數(shù)值模擬[D];太原理工大學(xué);2012年
3 田源;鹽穴型地下儲(chǔ)氣庫(kù)溶腔形態(tài)變化規(guī)律及安全控制技術(shù)研究[D];西南石油大學(xué);2014年
4 孟濤;鹽巖水平溶腔儲(chǔ)庫(kù)建造與運(yùn)行穩(wěn)定性數(shù)值模擬研究[D];太原理工大學(xué);2013年
,本文編號(hào):2166523
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2166523.html