弱層理剪切誘導(dǎo)縫網(wǎng)裂縫的形成與擴(kuò)展機(jī)理研究
[Abstract]:Shale gas is an important unconventional oil and gas resource in order to achieve natural gas production replacement. Only through volume fracturing to form fracture network fracture can economic and effective development be realized. Based on the characteristics of the development of weak bedding in shale reservoir, it is of great significance to realize the efficient development of shale reservoir from the action mechanism of shear slip of weak bedding on hydraulic fracture, and to reveal the law of fracture extension. In this paper, based on the equilibrium equation of porous media and the continuity equation of fluid flow, the fluid-solid coupling mathematical model of reservoir is established, and the finite element equations for solving nodal displacement and pore pressure are derived. The criterion of crack initiation and the criterion of inducing weak bedding propagation in rock are analyzed. The cohesive element used to describe weak bedding is described, and a mathematical model for analyzing the mechanism of crack initiation and propagation is formed. Secondly, a model I crack propagation test bench with lateral confining pressure is built. The digital speckle correlation method is used to capture the change of speckle field on the surface of the specimen by using a high-speed camera. The variation of surface displacement field and strain field during crack propagation through weak bedding is obtained. The variation law of stress intensity factor at crack tip is obtained by displacement extrapolation method, and the main controlling mechanism of mode I crack bend propagation is found. Thirdly, a mechanical model of the intersection and propagation of hydraulic fractures and weak bedding is established, and the second-order damage Zhang Liang is used to describe the irregular distribution of weak bedding in the formation by means of numerical simulation. A 2-D fracture mesh fracture model with coupling of bedrock hydraulic fracture and weak bedding is established. The fracture initiation and propagation are simulated by traction-separation criterion of stiffness degradation. A numerical simulation method of fracture network fracture in shale reservoir is proposed. The rationality of the numerical simulation method is verified by field wells. Fourthly, by using the numerical simulation method, it is found that after the intersection of hydraulic fracture and weak bedding, shearing failure of weak bedding occurs under the joint action of passivation at the tip of hydraulic fracture and far field ground stress, and branch fracture is formed. Considering the contribution of various factors to shear failure and the influence of fracture propagation speed, the smaller the horizontal principal stress difference, the greater the injection flow rate, the greater the elastic modulus of reservoir rock and the proper fracturing fluid viscosity. It can effectively activate weak bedding to form fracture net fracture and obtain larger fracturing area. Based on the characteristics of weak bedding development in unconventional shale reservoir, this paper reveals the formation mechanism of fracture pattern induced by shear slip of weak bedding, and obtains the influence of various factors on fracture extension morphology. It can provide technical support for fracturing operation design of unconventional reservoir and improve fracturing effect.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE377
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何森林;黃昕;張子新;;石膏試件的力學(xué)特性研究[J];地下空間與工程學(xué)報(bào);2016年S1期
2 劉順;何衡;王俊奇;周德勝;;水力壓裂的天然裂縫延伸簡(jiǎn)單模型[J];斷塊油氣田;2016年04期
3 張建營(yíng);周世明;李陽(yáng);廖晨;劉霞;;中國(guó)頁(yè)巖氣開發(fā)進(jìn)展與展望[J];科技創(chuàng)新與應(yīng)用;2016年03期
4 王松;楊洪志;趙金洲;李農(nóng);李勇明;;頁(yè)巖氣井可壓裂性綜合評(píng)價(jià)方法研究及應(yīng)用[J];油氣地質(zhì)與采收率;2016年02期
5 楊瑞召;趙百順;趙曉莉;趙爭(zhēng)光;王金良;盧昊;;縫網(wǎng)壓裂技術(shù)研究及在大慶油田中的應(yīng)用[J];能源技術(shù)與管理;2015年05期
6 劉合;董康興;王素玲;王瀚;;垂直裂縫在砂泥巖層理界面上拐折擴(kuò)展特性研究[J];實(shí)驗(yàn)力學(xué);2015年04期
7 孟凡坤;蘇玉亮;魯明晶;任龍;崔靜;;長(zhǎng)6特低滲透油藏重復(fù)壓裂復(fù)雜縫網(wǎng)參數(shù)優(yōu)化[J];石油鉆采工藝;2015年04期
8 何建華;丁文龍;王哲;藍(lán)寶鋒;趙金利;趙冬;;頁(yè)巖儲(chǔ)層體積壓裂縫網(wǎng)形成的主控因素及評(píng)價(jià)方法[J];地質(zhì)科技情報(bào);2015年04期
9 周再樂(lè);張廣清;熊文學(xué);李軍;倪小龍;黃衛(wèi)紅;;水平井限流壓裂射孔參數(shù)優(yōu)化[J];斷塊油氣田;2015年03期
10 潘林華;程禮軍;張士誠(chéng);郭天魁;柳凱譽(yù);;頁(yè)巖儲(chǔ)層體積壓裂裂縫擴(kuò)展機(jī)制研究[J];巖土力學(xué);2015年01期
相關(guān)博士學(xué)位論文 前6條
1 鄧佳;頁(yè)巖氣儲(chǔ)層多級(jí)壓裂水平井非線性滲流理論研究[D];北京科技大學(xué);2015年
2 趙健;數(shù)字散斑相關(guān)方法及其在工程測(cè)試中的應(yīng)用研究[D];北京林業(yè)大學(xué);2014年
3 代樹紅;基于數(shù)字圖像相關(guān)方法的斷層破裂擴(kuò)展實(shí)驗(yàn)研究[D];中國(guó)地震局地質(zhì)研究所;2013年
4 王瀚;水力壓裂垂直裂縫形態(tài)及縫高控制數(shù)值模擬研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
5 陳紅江;裂隙巖體應(yīng)力—損傷—滲流耦合理論、試驗(yàn)及工程應(yīng)用研究[D];中南大學(xué);2010年
6 楊新輝;脆性/韌性斷裂機(jī)理與判據(jù)及裂尖變形理論研究[D];大連理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李兵;巖石相似材料的試驗(yàn)研究[D];重慶大學(xué);2015年
2 魏瑞;頁(yè)巖地層水力裂縫剪切滑移機(jī)理研究[D];西南石油大學(xué);2015年
3 付明華;蘇里格氣田壓后評(píng)估分析[D];西南石油大學(xué);2015年
4 何雙喜;頁(yè)巖氣藏縫網(wǎng)壓裂控制體積研究[D];西南石油大學(xué);2014年
5 黃靜;頁(yè)巖氣井井周網(wǎng)狀誘導(dǎo)縫形成巖石力學(xué)機(jī)制研究[D];西南石油大學(xué);2014年
6 韓麗玲;基于頁(yè)巖氣井產(chǎn)能最大化的體積壓裂參數(shù)優(yōu)化研究[D];中國(guó)石油大學(xué)(華東);2014年
7 李慶彬;砂/泥巖界面垂直裂縫擴(kuò)展規(guī)律研究[D];東北石油大學(xué);2013年
8 李曉慧;致密油藏水平井體積壓裂縫網(wǎng)參數(shù)優(yōu)化研究[D];中國(guó)石油大學(xué)(華東);2013年
9 那志強(qiáng);水平井壓裂起裂機(jī)理及裂縫延伸模型研究[D];中國(guó)石油大學(xué);2009年
10 彭紅利;碳酸鹽巖油氣藏構(gòu)造裂縫分布預(yù)測(cè)及定量參數(shù)場(chǎng)形成初步研究[D];西南石油學(xué)院;2005年
,本文編號(hào):2141693
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2141693.html