基于音波的輸氣管道泄漏檢測技術(shù)研究
[Abstract]:In the operation of long gas transmission pipeline, due to natural corrosion, aging, artificial damage and other reasons, pipeline leakage occurs, natural gas has the characteristics of flammable and explosive. If the leakage situation can not be found in time, it may bring great loss to the society and the environment and even cause casualties. Therefore, the leakage detection technology of gas pipeline is used. In this paper, based on the experimental system of high pressure gas transmission pipeline, the leakage detection technology based on sound wave method is studied. In order to reduce the noise of the acoustic wave signal, the method of wavelet transform is used to denoise, and the parameters of the optimal wavelet base, the decomposition layer number, the threshold processing method and so on are determined. After the analysis of the time domain, frequency domain and wavelet domain of the sound wave signal, the characteristic quantity can be extracted for leakage judgment. The appropriate characteristic amount is selected as the input of the neural network, and the BP neural network is established to determine the leakage and the leakage is accurately judged. Finally, the design of the leakage detection system based on LabVIEW is completed. This paper passes through this paper. The main conclusions of the experimental and theoretical analysis are as follows: (1) the sound wave signals collected by the system are non-stationary signals, and are suitable for wavelet transform denoising. (2) the wavelet threshold method is used to determine the denoising parameters, the optimal wavelet base is "sym2" small wave base, the 11 layer decomposition, the threshold selection rule is the Stein unbiased risk threshold (heursure) rule of the test method, Soft threshold processing method. (3) using continuous wavelet to realize signal time-frequency analysis, the optimal wavelet base is' mexh 'wavelet. (4) mean, variance, slope mean, autocorrelation, spectrum, power spectrum, wavelet energy and so on. (5) a multi parameter leakage diagnosis system is established, and the mean, variance, autocorrelation, power spectrum are selected. Density, wavelet packet frequency band 1 energy of these five characteristics, after processing the composition of the feature vector, the establishment of a multi parameter leakage diagnosis system based on BP neural network, can achieve accurate diagnosis. (6) the design of LabVIEW based leakage detection system, the use of LabVIEW to achieve wavelet denoising, feature extraction, neural network diagnosis, mutual clearance method to exclude working conditions Interference provides a reference for the application of algorithm in engineering.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE973.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高鵬;王海英;朱金華;王立獻(xiàn);;2011-2013年中國油氣管道進(jìn)展[J];國際石油經(jīng)濟(jì);2014年06期
2 孟令雅;付俊濤;李玉星;劉翠偉;劉光曉;;輸氣管道泄漏音波信號傳播特性及預(yù)測模型[J];中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
3 劉翠偉;李玉星;王武昌;付俊濤;方麗萍;;輸氣管道泄漏音波產(chǎn)生機(jī)理研究[J];振動(dòng)與沖擊;2013年07期
4 孟令雅;劉翠偉;李玉星;王武昌;張帆;;輸氣管道氣動(dòng)噪聲產(chǎn)生機(jī)制及其分析方法[J];中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
5 張峰;石現(xiàn)峰;張學(xué)智;;Welch功率譜估計(jì)算法仿真及分析[J];西安工業(yè)大學(xué)學(xué)報(bào);2009年04期
6 萬洪杰;孫凌云;張興武;;DOLPHIN智能音波管道泄漏監(jiān)測系統(tǒng)[J];自動(dòng)化博覽;2009年03期
7 邱毅;;基于正交小波變換的信號降噪算法研究[J];電腦與電信;2008年06期
8 楊森斌;陳硯圃;李真;;一種改進(jìn)的自相關(guān)函數(shù)基音檢測算法[J];現(xiàn)代電子技術(shù);2008年09期
9 余洋;;中國油氣管道發(fā)展現(xiàn)狀及前景展望[J];國際石油經(jīng)濟(jì);2007年03期
10 楊理踐;景曉斐;宮照廣;;輸氣管道音波泄漏檢測技術(shù)的研究[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2007年01期
相關(guān)博士學(xué)位論文 前3條
1 孟凡勇;基于OFDR技術(shù)的管道防破壞預(yù)警系統(tǒng)設(shè)計(jì)與信號分析處理方法研究[D];河北工業(yè)大學(xué);2010年
2 羅光坤;Morlet小波變換理論與應(yīng)用研究及軟件實(shí)現(xiàn)[D];南京航空航天大學(xué);2007年
3 崔謙;油氣管道泄漏檢測方法的研究及應(yīng)用[D];天津大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 王虎;分布式光纖布里淵散射溫度應(yīng)變傳感技術(shù)研究[D];西安石油大學(xué);2012年
2 王蘭蘭;基于負(fù)壓波的輸油管道泄漏檢測技術(shù)研究[D];東北石油大學(xué);2011年
3 陳甲;管道高壓含硫天然氣泄漏擴(kuò)散規(guī)律研究[D];西安科技大學(xué);2010年
4 關(guān)鍵;基于BP神經(jīng)網(wǎng)絡(luò)的管道泄漏定位系統(tǒng)研究[D];北京交通大學(xué);2009年
5 彭紅偉;輸氣管道泄漏診斷與定位技術(shù)試驗(yàn)研究[D];中國石油大學(xué);2009年
6 黃麗;BP神經(jīng)網(wǎng)絡(luò)算法改進(jìn)及應(yīng)用研究[D];重慶師范大學(xué);2008年
7 劉登峰;電網(wǎng)故障信息綜合處理與診斷系統(tǒng)研究[D];華中科技大學(xué);2007年
8 宿建波;小波變換在管道泄漏檢測中的應(yīng)用研究[D];中國石油大學(xué);2007年
9 劉濤;管道檢測系統(tǒng)中的信號處理技術(shù)研究[D];天津大學(xué);2007年
10 章品書;基于模型的天然氣管道泄漏檢測技術(shù)研究[D];北京化工大學(xué);2006年
,本文編號:2127662
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2127662.html