游梁式抽油機(jī)自頂向下設(shè)計(jì)與聯(lián)合仿真研究
[Abstract]:The beam pumping unit occupies an overwhelming majority in the existing oil production machinery. In view of its traditional design method (bottom up), the efficiency is low, and the design of beam pumping unit with the top down design method is less. Therefore, based on the basic parameter information of the pumping unit, this paper makes a top-down parameterized design for the beam pumping unit, in order to reduce the design. It is of great significance to shorten the design cycle of the product. In the process of the pumping unit, the key components of the pumping unit, especially the connecting rod, are prone to fatigue damage under cyclic alternating load. At present, the fatigue prediction of the key components of the pumping unit is used as a static loading method, this method is analyzed. It is not accurate enough and does not agree with the actual situation. So how to use dynamic method to study the fatigue life of the key components of the pumping unit is of great significance to its fatigue prediction. In this paper, a beam pumping unit is used as the research object. The next few aspects. (1) take the Creo software as the platform, use the top-down design method to design this type of beam pumping unit. According to the complexity of the pumping unit, it is divided into four modules. A subframework model is set up for each module to pass the top layer design information for the middle hub and ensure the number of the whole design process. According to the close connection, the design method of the model can be realized quickly, the design cycle of the product is shortened and the design efficiency of the beam pumping unit is greatly improved. (2) the design calculation and model design of the beam pumping unit are completed by Mathcad parameter calculation and Creo parameter transfer. The design method is from the beam pumping unit parameters. To calculate the formation of the assembly model, if the whole process is calculated, the result can be transferred to the geometric model in time, and it is fast and accurate. The design method makes up the shortage of the traditional design and improves the design efficiency. (3) based on the AMESim software, the 1D simulation model of the beam pumping unit is built. The suspension point motion and dynamic characteristics are analyzed. The results of the suspended point displacement, velocity, acceleration and load are compared with the theoretical calculation. The accuracy is verified by the theoretical calculation. (4) the multi rigid body dynamic model of the beam pumping unit is established in the Motion software, and the beam pumping is based on the joint simulation of AMESim 1D and Motion 3D. The dynamic simulation analysis of the oil machine is carried out. The motion law of the hanging point of the donkey head and the time history of the main dynamic forces, such as the force of the hinge joints at the four linkage mechanism of the pumping unit, the gear meshing force of the reducer, etc.. (5) the rigid flexible coupling dynamics simulation analysis is carried out on the flexible beam pumping unit of the connecting rod, and the inherent characteristics of the connecting rod are obtained. It shows the maximum inherent amplitude in the central part of the connecting rod. By comparing the simulation results of rigid flexible coupling dynamics with the simulation results of rigid body dynamics, it is found that after the connecting rod is flexible, the dynamic characteristics of the connecting rod system can be more truly reflected. The stress on the connecting rod and the deformation analysis show that the maximum stress on the connecting rod is located in the rod body. The maximum deformation occurs at the two ends of the connecting rod structure at the transition angle of the structure. (6) the modal participation factor of the connecting rod is obtained by the results of the rigid flexible coupling dynamic calculation. The modal participation factor and the modal are linear superimposed, and the load history of the connecting rod is obtained, and it is used as the fatigue analysis input data, and the Durability module of Virtaul.Lab is used. The fatigue life value and damage distribution of the connecting rod are obtained, and the fatigue damage position of the connecting rod is determined. The results can provide an important reference for the study of the fatigue life of the key components of the pumping unit. This method also predicts the early fatigue damage position and fatigue life of the similar mechanical product. For reference, it is also useful for other related fields.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE933.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高海軍;孫文磊;譚遠(yuǎn)華;;基于剛?cè)狁詈系某橛蜋C(jī)多體系統(tǒng)動(dòng)力學(xué)分析[J];機(jī)械設(shè)計(jì)與制造;2015年12期
2 方吉;兆文忠;樸明偉;;基于模態(tài)疊加法的焊接結(jié)構(gòu)疲勞壽命預(yù)測方法研究[J];振動(dòng)與沖擊;2015年05期
3 呂國林;褚學(xué)寧;儲(chǔ)德新;沈靖;劉相振;;自頂向下設(shè)計(jì)的多骨架建模方法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年03期
4 崔娜娜;吳娟;崔海云;;基于Motion/AMESim的某變載機(jī)構(gòu)的建模與仿真分析[J];液壓氣動(dòng)與密封;2013年09期
5 何畏;王向濤;孫宇;王鈺文;;抽油機(jī)連桿的力學(xué)分析及結(jié)構(gòu)改進(jìn)[J];天然氣與石油;2013年03期
6 駱清國;王旭東;張更云;楊良平;冉光政;;變工況下的發(fā)動(dòng)機(jī)連桿動(dòng)態(tài)應(yīng)力與疲勞損傷分析[J];車用發(fā)動(dòng)機(jī);2012年04期
7 彭謙;馬晨光;楊雪梅;范瀅;;線性模態(tài)分析中的參與因子與貢獻(xiàn)因子[J];電網(wǎng)技術(shù);2010年02期
8 鄭滿圈;;游梁式抽油機(jī)運(yùn)動(dòng)規(guī)律的多體動(dòng)力學(xué)分析[J];石油機(jī)械;2006年05期
9 王宏偉;邢波;駱紅云;;雨流計(jì)數(shù)法及其在疲勞壽命估算中的應(yīng)用[J];礦山機(jī)械;2006年03期
10 任尊松,孫守光,李強(qiáng),毛娟;構(gòu)架結(jié)構(gòu)振動(dòng)與動(dòng)態(tài)應(yīng)力仿真研究[J];機(jī)械工程學(xué)報(bào);2004年08期
相關(guān)博士學(xué)位論文 前2條
1 徐金超;游梁抽油機(jī)正扭矩調(diào)制方法及關(guān)鍵技術(shù)[D];中國石油大學(xué)(華東);2014年
2 繆炳榮;基于多體動(dòng)力學(xué)和有限元法的機(jī)車車體結(jié)構(gòu)疲勞仿真研究[D];西南交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 蔣帆;游梁式抽油機(jī)尾部支撐結(jié)構(gòu)的分析研究[D];蘭州理工大學(xué);2016年
2 常娟;基于NX自頂向下的后裝壓縮式垃圾車設(shè)計(jì)技術(shù)研究[D];安徽理工大學(xué);2015年
3 徐叢國;挖掘機(jī)回轉(zhuǎn)馬達(dá)總成技術(shù)研究及回轉(zhuǎn)系統(tǒng)機(jī)液聯(lián)合仿真[D];貴州大學(xué);2015年
4 謝寧;振動(dòng)模態(tài)對(duì)高速列車車體疲勞壽命的影響分析[D];西南交通大學(xué);2015年
5 楊保貴;游梁式抽油機(jī)虛擬樣機(jī)測試及有限元仿真分析[D];長安大學(xué);2015年
6 羅愿欣;油氣緩沖器動(dòng)態(tài)和靜壓曲線仿真計(jì)算及研究[D];西安工業(yè)大學(xué);2015年
7 王繼明;懸臂式掘進(jìn)機(jī)機(jī)液聯(lián)合仿真研究[D];沈陽建筑大學(xué);2015年
8 邢金玲;柔性機(jī)構(gòu)在常規(guī)型抽油機(jī)中的應(yīng)用與研究[D];蘭州理工大學(xué);2014年
9 鄧朋儒;基于多體動(dòng)力學(xué)的鐵路斜拉橋車—橋耦合分析及疲勞損傷評(píng)估[D];中南大學(xué);2014年
10 易yN;顎式破碎機(jī)自頂向下的參數(shù)化設(shè)計(jì)及其有限元分析[D];太原理工大學(xué);2014年
,本文編號(hào):2123999
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2123999.html