木南區(qū)機(jī)采井防腐防垢技術(shù)研究與應(yīng)用
本文選題:木南區(qū) + 緩蝕防垢; 參考:《東北石油大學(xué)》2015年碩士論文
【摘要】:本論文主要研究木南區(qū)油田井筒腐蝕、結(jié)垢現(xiàn)象。通過腐蝕、結(jié)垢機(jī)理和影響因素分析,明確腐蝕、結(jié)垢發(fā)生的原因,在此基礎(chǔ)上開展防腐防垢技術(shù)研究,提出預(yù)防治理方案,以解決困繞油田生產(chǎn)多年的腐蝕、結(jié)垢難題。對(duì)木南區(qū)油田開展油、水、垢樣測(cè)試分析。水質(zhì)分析結(jié)果表明:木南區(qū)油田不同斷塊油井礦化度相差較大,在320mg/L~11000mg/L之間。木南區(qū)油田不同斷塊油井細(xì)菌含量較高,最高的讓41斷塊的讓41井高達(dá)106以上,同時(shí)含有S2-。木南區(qū)油田大部分油井含有游離CO2。實(shí)驗(yàn)選取木南區(qū)10口井垢樣分析結(jié)果表明:有六口井以腐蝕為主,其中五口井存在輕度無機(jī)結(jié)垢;五口井存在硫化物腐蝕。4口井腐蝕、結(jié)垢并存。無法判斷是否存在二氧化碳腐蝕,也不能肯定存在氧腐蝕。注入水與地層配伍性研究結(jié)果分析表明,不同斷塊、不同油井與對(duì)應(yīng)注入水之間配伍性存在差異,有的配伍性較好,有的較差,有的影響不大。開展腐蝕影響因素及其規(guī)律實(shí)驗(yàn),研究結(jié)果表明:Cl-含量在6000mg/L的范圍內(nèi),腐蝕速率隨Cl-含量增加先增加后減小,1000mg/L時(shí)腐蝕速率最大。隨著SO42-濃度的增加,腐蝕速率先增加后減小,在400mg/L時(shí)腐蝕速率最大。隨著HCO3-濃度的增加腐蝕速率先減小后增大,在HCO3-濃度達(dá)到600mg/L時(shí)腐蝕速率下降的比較緩慢,曲線接近水平;當(dāng)HCO3-濃度達(dá)到800mg/L時(shí)腐蝕速率開始上升。對(duì)腐蝕結(jié)垢機(jī)理進(jìn)行分析,油井結(jié)垢主要來源兩個(gè)方面:油井生產(chǎn)層位不同可能導(dǎo)致結(jié)垢和物理?xiàng)l件發(fā)生變化導(dǎo)致結(jié)垢。進(jìn)行室內(nèi)實(shí)驗(yàn)藥劑初選,結(jié)果表明:緩蝕劑和阻垢劑五種組合方式中5號(hào)配方效果最佳,室內(nèi)實(shí)驗(yàn)緩蝕率達(dá)到82%,阻垢率達(dá)到92%。利用室內(nèi)實(shí)驗(yàn)篩選所得最佳藥劑組合開展單井配方驗(yàn)證實(shí)驗(yàn),結(jié)果表明:優(yōu)選出的5號(hào)配方對(duì)不同油井雖然緩蝕、阻垢效果有所差別,但最體來看,均具有較好的緩蝕、阻垢效果,在加藥量達(dá)到120mg/L時(shí),緩蝕率達(dá)到70%以上,阻垢率達(dá)到80%以上,基本能滿足現(xiàn)場(chǎng)試驗(yàn)的需要。利用室內(nèi)實(shí)驗(yàn)篩選所得最佳藥劑組合進(jìn)行現(xiàn)場(chǎng)實(shí)驗(yàn),結(jié)果表明:試驗(yàn)選取的緩蝕劑和阻垢劑起到較好的緩蝕、阻垢效果,緩蝕率接近90%,阻垢率達(dá)到90%左右。
[Abstract]:This paper mainly studies well hole corrosion and scaling phenomenon in Munan Oilfield. Through the analysis of corrosion, scaling mechanism and influencing factors, the causes of corrosion and scaling are determined. On the basis of this, the anticorrosion and scale prevention technology is studied, and the prevention and treatment scheme is put forward to solve the problem of corrosion and scaling in oil field for many years. Test and analysis of oil, water and scale in Mu Nan Oilfield. The results of water quality analysis show that the mineralization degree of the wells in different fault blocks in Munan Oilfield is quite different, ranging from 320 mg / L to 11 000 mg / L. The content of bacteria in the wells of different fault blocks in Munan Oilfield is high, and the highest oil wells of Jeng41 block are over 106, and the oil wells contain S2-2. Most of the wells in Munan Oilfield contain free CO _ 2. The results of scale analysis of 10 wells in Mu Nan District show that six wells are mainly corroded, among which five wells have mild inorganic scaling, and five wells have sulfide corrosion of .4 wells. It is impossible to determine whether there is carbon dioxide corrosion or oxygen corrosion. The results of study on compatibility between injection water and formation show that there are differences in compatibility between different fault blocks and corresponding injection water, some of which are good compatibility, some are poor, and some have little effect. The experimental results show that the corrosion rate increases first with the increase of Cl- content and then decreases by 1000 mg / L. The results show that the corrosion rate is the highest in the range of 6 000 mg / L of Cl- content and then decreases to 1 000 mg / L with the increase of Cl- content. With the increase of so _ 4 ~ (2-) concentration, the corrosion rate increases first and then decreases, and the corrosion rate is the highest at 400 mg 路L ~ (-1) 路L ~ (-1). With the increase of HCO _ 3- concentration, the corrosion rate decreases first and then increases. The corrosion rate decreases slowly when the HCO _ 3- concentration reaches 600mg / L, and the curve is close to the level, and the corrosion rate begins to rise when the HCO _ 3- concentration reaches 800mg / L. According to the analysis of corrosion and scaling mechanism, there are two main sources of scale in oil wells: the different layers of oil well production may lead to scaling and the change of physical conditions may lead to scaling. The results showed that formula No. 5 had the best effect among the five combinations of corrosion inhibitor and scale inhibitor. The corrosion inhibition rate and scale inhibition rate were 82 and 92 respectively. Single well formula verification experiment was carried out with the best combination of chemicals selected by laboratory experiments. The results show that the selected formula 5 has different corrosion inhibition and scale inhibition effect to different wells, but in most cases, it has better corrosion inhibition. When the dosage is 120 mg / L, the corrosion inhibition rate is more than 70% and the scale inhibition rate is over 80%, which can basically meet the needs of field test. The results show that the corrosion inhibitor and scale inhibitor selected in the experiment have a good corrosion inhibition effect, the inhibition rate is close to 90, and the scale inhibition rate is about 90%.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE983
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭鐵輝;鋁在碳酸鈉溶液介質(zhì)中的緩蝕研究[J];廣西科學(xué);2002年04期
2 徐靜靜;崔金華;李復(fù)生;梅剛志;;高效鹽酸緩蝕抑霧劑的研究[J];材料開發(fā)與應(yīng)用;2005年06期
3 屈鈞娥;郭興蓬;張金枝;柴仕淦;;緩蝕膜電化學(xué)行為與微觀粘附力特征[J];物理化學(xué)學(xué)報(bào);2008年08期
4 黃偉琴;沈麗萍;孫桂春;高勝華;;緩蝕劑緩蝕率檢測(cè)方法中存在的問題及改進(jìn)措施[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2008年10期
5 李強(qiáng);趙永峰;左禹;熊金平;;油氣田緩蝕技術(shù)研究進(jìn)展[J];石油化工腐蝕與防護(hù);2010年06期
6 劉軍;溫亞雄;雷曉紅;李莉;趙偉;;緩蝕劑常壓靜態(tài)緩蝕率檢測(cè)不確定度的評(píng)定[J];計(jì)量與測(cè)試技術(shù);2012年02期
7 李延武;;緩蝕技術(shù)在加氫裂化裝置上的實(shí)踐[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年18期
8 張大全;;緩蝕技術(shù)研究進(jìn)展及在能源工業(yè)中的應(yīng)用[J];上海電力學(xué)院學(xué)報(bào);2013年04期
9 陳恕華,馬潔倩,舒和慶;低碳鋼-硫酸-硫脲緩蝕體系的研究[J];腐蝕科學(xué)與防護(hù)技術(shù);1991年01期
10 鄭少波;杜鶴桂;;光—磁處理冷卻水緩蝕模型研究[J];浙江冶金;1997年02期
相關(guān)會(huì)議論文 前3條
1 張靜;張輝;姚連勝;齊長(zhǎng)發(fā);;應(yīng)用于帶鋼連續(xù)酸洗線的緩蝕抑霧劑的試驗(yàn)評(píng)估[A];2008年全國(guó)軋鋼生產(chǎn)技術(shù)會(huì)議文集[C];2008年
2 張靜;張輝;姚連勝;齊長(zhǎng)發(fā);;應(yīng)用于帶鋼連續(xù)酸洗線的緩蝕抑霧劑的試驗(yàn)評(píng)估[A];2008年河北省軋鋼技術(shù)與學(xué)術(shù)年會(huì)論文集(上)[C];2008年
3 杜清珍;羅玉儒;王兆風(fēng);譚哲峰;;京22、京58斷塊油井防腐防垢技術(shù)研究[A];第二屆石油石化工業(yè)用材研討會(huì)論文集[C];2001年
相關(guān)博士學(xué)位論文 前1條
1 趙永峰;13Cr鋼在CO_2-H_2S-Cl~-體系中的腐蝕行為及其緩蝕技術(shù)研究[D];北京化工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 田亮;海管管線封存期間防腐措施研究[D];西安石油大學(xué);2015年
2 孫雪姣;塔里木油田集油管線緩蝕劑應(yīng)用研究[D];西安石油大學(xué);2015年
3 強(qiáng)娟;咪唑基復(fù)配緩蝕劑抗二氧化碳腐蝕的緩蝕協(xié)同效應(yīng)研究[D];延安大學(xué);2015年
4 郭小斌;木南區(qū)機(jī)采井防腐防垢技術(shù)研究與應(yīng)用[D];東北石油大學(xué);2015年
5 金陽群;鋼鐵表面有機(jī)緩蝕膜的制備和性能研究[D];西安電子科技大學(xué);2009年
6 鄭萌;水解聚丙烯酰胺對(duì)碳鋼在海水中的緩蝕研究[D];中國(guó)海洋大學(xué);2008年
7 段錦梅;四丁基溴化銨溶液中銅的緩蝕研究[D];華南理工大學(xué);2010年
8 伍平凡;N-芳基-芐基膦酸的合成及對(duì)鋼鐵的緩蝕研究[D];華中師范大學(xué);2002年
9 陳世亮;銅、碳鋼表面自組裝含羧基席夫堿緩蝕膜的實(shí)驗(yàn)與理論評(píng)價(jià)[D];桂林理工大學(xué);2012年
10 劉海燕;金屬鈦的腐蝕及緩蝕電化學(xué)研究[D];曲阜師范大學(xué);2010年
,本文編號(hào):2115091
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2115091.html