水平井定面射孔水力壓裂數(shù)值模擬研究
本文選題:水平井 + 定面射孔 ; 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:水平井定面射孔技術(shù)是一種新型的射孔技術(shù)。水平井可以通過改變穿過油層的方位來避免穿透復(fù)雜地形,從而降低了實施的難度,定面射孔技術(shù)可以通過調(diào)節(jié)射孔彈的布彈方式,從而獲得最優(yōu)破裂面,擴(kuò)大裂紋區(qū)域,降低巖石的起裂壓力,科學(xué)的引導(dǎo)裂縫走向。與常規(guī)射孔和單一射孔相比,定面射孔可以減小巖石的破裂壓力,增加巖石的破裂區(qū)域,減小地層的破壞,增加其穩(wěn)定性,提高石油的產(chǎn)量。本文采用最大拉應(yīng)力原理結(jié)合數(shù)值模擬的方法,對水平井定面射孔水力壓裂巖石起裂進(jìn)行研究。本文主要從以下幾個方面進(jìn)行研究分析:首先,本文利用有限元軟件Abaqus 6.14對不同地應(yīng)力,射孔夾角(15°, 30°,45°,60°,75°,90°),射孔尺寸(射孔直徑,射孔深度)等影響因素的研究以及對預(yù)測裂紋區(qū)域(1.同一夾角,不同壓裂液壓力;2.同一壓裂液壓力,不同夾角)的分析,得出不同影響因素下,巖石起裂壓力的變化規(guī)律。通過模擬得出:(1)在不同的地應(yīng)力狀態(tài)下,巖石的起裂壓力不同,第一種地應(yīng)力場情況下所需要的起裂壓力最大,第三種地應(yīng)力場次之,第二種地應(yīng)力場情況下所需要的起裂壓力最小,其中,最大水平主應(yīng)力和最小水平主應(yīng)力的變化對巖石的起裂壓力也有所影響。(2)地應(yīng)力大小相同的情況下,三種地應(yīng)力狀態(tài)所得出的結(jié)果相同,巖石的起裂壓力都是隨著射孔夾角增大而增加。(3)只改變射孔直徑增加,起裂壓力呈減小趨勢,隨著射孔長度的減小起裂壓力也呈減小趨勢。(4)同一壓裂液壓力,改變射孔間的夾角,當(dāng)射孔夾角為60°時,射孔間裂縫擴(kuò)展區(qū)域、射孔間距、相鄰射孔裂縫擴(kuò)展融合區(qū)域都是最合適的,最終裂縫擴(kuò)展融合面積最大,45°時較次之;同一射孔夾角,由于壓裂液壓力的增大,應(yīng)力在射孔孔眼之間相互作用,裂縫最初發(fā)生在射孔與井筒的交界處,隨后相互貫通,最后形成扇形預(yù)測破裂面。其次,三種射孔彈型從巖石的起裂壓力與預(yù)測裂紋區(qū)域兩方面進(jìn)行對比分析,三種射孔彈類型分別為: 1#射孔彈:孔徑10.4mm,孔深660nm; 2#射孔彈:孔徑11.0mm,孔深876mm; 3#射孔彈:孔徑16.9mm,孔深646mm。得出2#射孔彈型最優(yōu)。最后,采用有限元軟件Abaqus 6.14對單一射孔、常規(guī)射孔和定面射孔進(jìn)行對比分析。(1)對不同射孔方式下巖石的起裂壓力進(jìn)行對比:單一射孔,主要研究了角度由0°變化到90°時,巖石的起裂壓力;常規(guī)射孔,只對射孔孔眼間距沿Y軸分別為6cm/24cm/6cm的一種情況進(jìn)行研究;(2)對比三種射孔在同一壓裂液壓力(40MPa,60MPa)下,預(yù)測裂紋區(qū)域面積的對比。結(jié)果表明:定面射孔相對于前兩種射孔方式,在降低起裂壓力與預(yù)測裂紋區(qū)域方面都具有一定的優(yōu)勢。由上述研究分析,本文從如何降低巖層的破裂壓力入手,主要研究了不同影響因素下,巖石的起裂壓力的變化規(guī)律,從而將定面射孔進(jìn)行優(yōu)化。
[Abstract]:Horizontal well fixed-plane perforation technology is a new type of perforation technology. Horizontal well can avoid penetrating complex terrain by changing the direction of passing through the reservoir, thus reducing the difficulty of implementation. The fixed plane perforation technology can obtain the optimal fracture surface and expand the crack area by adjusting the method of projectile distribution. Reduce the initiation pressure of rock and guide the fracture direction scientifically. Compared with conventional perforation and single perforation, fixed plane perforation can reduce rock fracture pressure, increase rock fracture area, reduce formation damage, increase stability and increase oil production. In this paper, the maximum tensile stress principle and numerical simulation method are used to study the fracture initiation of hydraulic fracturing rock with fixed plane perforation in horizontal well. This paper mainly studies and analyzes the following aspects: firstly, this paper uses finite element software Abaqus 6.14 to deal with different in-situ stress, perforation angle (15 擄, 30 擄(45 擄) 60 擄60 擄(75 擄) 90 擄), perforation size (perforation diameter). Study on influencing factors such as perforation depth and prediction of crack area (1. At the same angle, different fracturing fluid pressure is 2. According to the analysis of the same fracturing fluid pressure and different angle, the variation law of rock initiation pressure is obtained under different influence factors. The simulation results show that: (1) under different in-situ stress states, the initiation pressure of rock is different, the first kind of in-situ stress field requires the biggest initial crack pressure, the third kind of in-situ stress field is the second. The change of maximum horizontal principal stress and minimum horizontal principal stress also affect the initiation pressure of rock. (2) under the same magnitude of in-situ stress, the initiation pressure of rock is the smallest, and the variation of maximum horizontal principal stress and minimum horizontal principal stress also affect the initiation pressure of rock. (2) under the condition of the same magnitude of in-situ stress, The results obtained from the three in-situ stress states are the same. The initiation pressure of rock increases with the increase of perforation angle. (3) the diameter of perforation increases and the initiation pressure decreases. With the decrease of perforation length, the initiation pressure also decreased. (4) when the angle of perforation was 60 擄, the fracture spread area and perforation distance between the perforations were changed with the same fracturing fluid pressure. The area of adjacent perforation fracture propagation and fusion is the most suitable, and the final fracture propagation fusion area is the second when the maximum area is 45 擄, and the stress interaction between perforating holes is due to the increase of fracturing fluid pressure at the same perforation angle. The fracture occurred at the junction of perforation and wellbore, and then intersected with each other, and finally formed the fan-shaped predicted fracture surface. Secondly, three types of perforated projectiles are compared and analyzed from two aspects: the initiation pressure of rock and the prediction of crack area. The three types of perforating projectile are: 1# projectile with an aperture of 10.4mm and hole depth of 660nm; 2# projectile with an aperture of 11.0mm and a hole depth of 876mm; and a perforator with an aperture of 16.9mm and a hole depth of 646mm. The optimum perforating projectile type is obtained. Finally, the finite element software Abaqus 6.14 is used to compare and analyze single perforation, conventional perforation and fixed plane perforation. (1) the crack initiation pressure of rock under different perforation modes is compared: single perforation, when angle changes from 0 擄to 90 擄, is studied. The fracture initiation pressure of rock and conventional perforation are studied only when the perforating hole spacing is 6cm/24cm/6cm along Y axis, and (2) the comparison of three perforating fluid pressure (40MPA ~ (60 MPA) in predicting the area of crack area is made. The results show that the fixed plane perforation has some advantages in reducing the initiation pressure and predicting the crack area compared with the first two perforation modes. Based on the above research and analysis, this paper starts with how to reduce the fracture pressure of rock, and mainly studies the variation law of the initiation pressure of rock under different influence factors, so as to optimize the fixed plane perforation.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE257.1;TE357.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王素玲;隋旭;朱永超;;定面射孔新工藝對水力裂縫擴(kuò)展影響研究[J];巖土力學(xué);2016年12期
2 趙振峰;唐梅榮;逄銘玉;薛世峰;孫峰;;定面射孔對壓裂初始裂縫形態(tài)的影響研究[J];科學(xué)技術(shù)與工程;2016年22期
3 侯振坤;楊春和;王磊;劉鵬君;郭印同;魏元龍;李芷;;大尺寸真三軸頁巖水平井水力壓裂物理模擬試驗與裂縫延伸規(guī)律分析[J];巖土力學(xué);2016年02期
4 劉合;蘭中孝;王素玲;許建國;趙晨旭;;水平井定面射孔條件下水力裂縫起裂機(jī)理[J];石油勘探與開發(fā);2015年06期
5 王磊;楊春和;郭印同;衡帥;魏元龍;侯振坤;李丹;;基于室內(nèi)水力壓裂試驗的水平井起裂模式研究[J];巖石力學(xué)與工程學(xué)報;2015年S2期
6 郭天魁;張士誠;潘林華;;頁巖儲層射孔水平井水力裂縫起裂數(shù)值模擬研究[J];巖石力學(xué)與工程學(xué)報;2015年S1期
7 鄧燕;尹建;郭建春;;水平井多段壓裂應(yīng)力場計算新模型[J];巖土力學(xué);2015年03期
8 李芷;賈長貴;楊春和;曾義金;郭印同;衡帥;王磊;侯振坤;;頁巖水力壓裂水力裂縫與層理面擴(kuò)展規(guī)律研究[J];巖石力學(xué)與工程學(xué)報;2015年01期
9 劉合;王峰;王毓才;高揚(yáng);成建龍;;現(xiàn)代油氣井射孔技術(shù)發(fā)展現(xiàn)狀與展望[J];石油勘探與開發(fā);2014年06期
10 唐凱;陳建波;陳華彬;任國輝;郭曉燕;;定面射孔技術(shù)在四川盆地致密氣井中的應(yīng)用[J];測井技術(shù);2014年04期
相關(guān)博士學(xué)位論文 前1條
1 張廣明;水平井水力壓裂數(shù)值模擬研究[D];中國科學(xué)技術(shù)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 張一鳴;水平井水力裂縫起裂與延伸規(guī)律研究[D];東北石油大學(xué);2014年
2 王繼波;水平井壓裂裂縫起裂和延伸規(guī)律研究[D];西安石油大學(xué);2010年
,本文編號:2105604
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2105604.html