扎納若爾油田Γ北Γ3Γ4油層段剩余油分布規(guī)律研究
本文選題:中低含水期油藏 + 數(shù)值模擬; 參考:《西南石油大學》2015年碩士論文
【摘要】:扎納若爾油田Γ北Γ3Γ油層段經(jīng)過幾十年的水驅(qū)開發(fā),目前仍處于中低含水期,但開發(fā)矛盾日益突出:日產(chǎn)油量下降,穩(wěn)產(chǎn)難度大,含水上升快,油水關(guān)系復雜,剩余油分布難以預測。截止2012年10月,油藏采出程度僅24.41%,地下仍有6741.05×104m3的可采儲量未被開采出。因此對油藏剩余油分布規(guī)律的研究以及制定合理的增產(chǎn)措施是目前迫切需要解決的問題。 本文建立了r北F3F4油層段數(shù)值模擬模型,進行生產(chǎn)歷史擬合,擬合了地質(zhì)儲量、油藏壓力、綜合含水率、井底壓力以及單井含水率等多項指標,歷史擬合中充分利用了水淹層測井解釋結(jié)果以及產(chǎn)吸剖面測試結(jié)果,指導了歷史擬合參數(shù)的調(diào)整。根據(jù)歷史擬合得到的剩余油飽和度和剩余油儲量豐度,提出了四種剩余油控制類型,其中井網(wǎng)不完善型約占32%,井間滯留型約占38%,斷層遮擋型約占9%,層間干擾型約占21%。 歷史擬合結(jié)束后,選取典型井組建立機理模型展開剩余油影響機理研究,通過對注水倍數(shù)的研究,將微觀注水倍數(shù)在平面上進行量化表征,統(tǒng)計各網(wǎng)格微觀注水倍數(shù)與網(wǎng)格含水、含油飽和度以及采出程度的關(guān)系,使得從微觀上定量分析剩余油分布規(guī)律以及評價油藏注水開發(fā)效果成為可能。統(tǒng)計宏觀注水倍數(shù)與采出程度以及含水率的關(guān)系,分析油藏開發(fā)的不同階段宏觀注水倍數(shù)對開發(fā)效果的影響。利用多層合采機理模型,從采出程度和小層進水量出發(fā),研究了非均質(zhì)性對剩余油分布的影響機理,結(jié)合微觀注水倍數(shù)平面分布,剖析了非均質(zhì)性影響采出程度的原因。 通過數(shù)值模擬研究以及剩余油機理研究,結(jié)合油藏目前的實際情況,提出了補孔堵水和打加密井兩種增產(chǎn)方案,并利用油藏數(shù)值模擬手段對開發(fā)方案進行比較,選出最優(yōu)開發(fā)調(diào)整方案。
[Abstract]:After decades of water drive development, the 螕 North 螕 3 interval in Zanaroer Oilfield is still in the middle and low water cut stage, but the contradiction of development is increasingly prominent: the daily oil production is decreasing, the stable production is difficult, the water cut is rising rapidly, and the oil-water relationship is complex. The distribution of remaining oil is difficult to predict. As of October 2012, the recovery degree of the reservoir is only 24.41%, and there are still 6741.05 脳 104m3 recoverable reserves unexploited underground. Therefore, the research on the distribution of remaining oil and the formulation of reasonable measures for increasing production are urgent problems to be solved. In this paper, a numerical simulation model of r north F3F4 reservoir is established, and the production history is fitted to fit many indexes, such as geological reserves, reservoir pressure, comprehensive water cut, bottom hole pressure and single well water cut, etc. In historical fitting, the interpretation results of water-flooded zone logging and the test results of production and absorption profile are fully utilized, which guides the adjustment of historical fitting parameters. According to the residual oil saturation and remaining oil reserves abundance obtained by historical fitting, four types of residual oil control types are proposed, among which the imperfect well pattern is about 32, the interwell retention is about 38, the fault occlusion is about 9, and the interlayer interference is about 21. After historical fitting, the mechanism model of typical well group is selected to study the influence mechanism of residual oil. Through the study of water injection ratio, the micro water injection multiple is quantified on the plane. It is possible to analyze the distribution of residual oil microscopically and evaluate the effect of reservoir waterflooding development by counting the relationship between the microcosmic water injection multiple of each grid and the water cut, oil saturation and recovery degree of the grid. The relationship between macro water injection ratio, recovery degree and water cut is analyzed, and the influence of macro water injection ratio on development effect in different stages of reservoir development is analyzed. The influence mechanism of heterogeneity on the distribution of residual oil is studied by using the multi-layer combined production mechanism model and the degree of recovery and the inflow of water into small layers. The reasons for the influence of heterogeneity on the degree of recovery are analyzed in combination with the plane distribution of microcosmic water injection multiple. Through numerical simulation and residual oil mechanism research, combined with the actual situation of oil reservoir at present, this paper puts forward two schemes of increasing production, that is, filling hole, plugging water and drilling infill wells, and compares the development schemes with reservoir numerical simulation. Select the optimal development adjustment scheme.
【學位授予單位】:西南石油大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE357.6;TE327
【參考文獻】
相關(guān)期刊論文 前10條
1 傅秀娟,閻存章;影響裂縫性油藏采收率的因素分析和采收率預測[J];大慶石油地質(zhì)與開發(fā);1998年06期
2 關(guān)振良,楊慶軍,段成剛;油藏數(shù)值模擬技術(shù)現(xiàn)狀分析[J];地質(zhì)科技情報;2000年01期
3 李廣超;劉大錳;車遙;;雙河油田扇三角洲前緣沉積微相特征及剩余油分布[J];石油天然氣學報(江漢石油學院學報);2006年01期
4 俞啟泰;關(guān)于剩余油研究的探討[J];石油勘探與開發(fā);1997年02期
5 周煦迪,俞啟泰,林志芳;油藏滲透率縱向非均質(zhì)分布對水驅(qū)采收率的影響[J];石油勘探與開發(fā);1997年02期
6 周琦,高宏印,袁淑芬;薩爾圖油田河流相儲集層高含水后期剩余油分布規(guī)律研究[J];石油勘探與開發(fā);1997年04期
7 徐樟有,熊琦華,張繼春;雁翎油田霧迷山組潛山油藏剩余油分布與預測[J];石油勘探與開發(fā);1997年05期
8 韓大匡;深度開發(fā)高含水油田提高采收率問題的探討[J];石油勘探與開發(fā);1995年05期
9 趙躍華,翁大麗,唐金星;應(yīng)用圖象處理技術(shù)研究雙河油田剩余油分布特征[J];石油勘探與開發(fā);1996年02期
10 徐文,高爽惠;數(shù)值模擬中網(wǎng)格方向的確定[J];石油勘探與開發(fā);1999年01期
,本文編號:2096535
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2096535.html