天然氣水合物藏注熱開(kāi)采熱前緣研究
本文選題:天然氣水合物 + 熱前緣; 參考:《中國(guó)石油大學(xué)(華東)》2015年碩士論文
【摘要】:近年來(lái)天然氣水合物藏被視為是新型的、清潔的、儲(chǔ)量非常大的可替代能源,尤其日本在南海海槽地層中成功開(kāi)采了天然氣水合物藏以來(lái),水合物藏的開(kāi)發(fā)受到各國(guó)政府和科研機(jī)構(gòu)的高度重視。注熱開(kāi)采水合物藏被認(rèn)為是有效且可行的方法之一,但明顯缺點(diǎn)是熱損失大、熱量利用率不高,因此,水合物藏注熱開(kāi)采的熱前緣移動(dòng)規(guī)律是亟需研究的關(guān)鍵課題。熱前緣的理論研究模型按側(cè)重點(diǎn)不同可分為三類(lèi):熱傳導(dǎo)模型、對(duì)流傳熱模型以及能量守恒模型。各模型考慮的側(cè)重點(diǎn)不同,數(shù)學(xué)模型的構(gòu)成也不同。從模型考慮因素以及數(shù)學(xué)模型的完整性上看,Selim模型和Macguire模型、前緣驅(qū)替模型是比較全面的模型。熱前緣的實(shí)驗(yàn)研究可分為一維填砂管實(shí)驗(yàn)研究和二維平板模型實(shí)驗(yàn)研究。一維實(shí)驗(yàn)結(jié)果表明,在注熱開(kāi)采水合物藏過(guò)程中,熱前緣的位置與時(shí)間呈近似直線型關(guān)系,二維實(shí)驗(yàn)結(jié)果顯示熱前緣的位置與時(shí)間呈拋物線型關(guān)系。地質(zhì)因素與注熱因素同時(shí)影響著熱前緣的移動(dòng),在實(shí)驗(yàn)條件下,水合物藏的飽和度、滲透率越高,熱前緣移動(dòng)越慢;水合物藏的初始溫度、注熱過(guò)程中的溫度、速度、鹽度以及注熱量越高,熱前緣移動(dòng)越快,但并不是線性遞增關(guān)系,說(shuō)明存在最佳注熱條件,在該條件下,熱前緣的移動(dòng)速度最優(yōu)。對(duì)比熱前緣的理論計(jì)算結(jié)果和實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),一維熱前緣理論模型的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果相差較大,需要提出改進(jìn)的一維熱前緣理論計(jì)算模型,影響因素的敏感性規(guī)律一致;二維熱前緣理論模型的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果較相符的是前緣驅(qū)替模型,在影響因素的敏感性分析上,前緣驅(qū)替模型也與實(shí)驗(yàn)結(jié)果一致,推薦作為二維熱前緣計(jì)算理想的理論模型。
[Abstract]:In recent years, natural gas hydrate reservoirs have been regarded as new, clean, and very large reserves of alternative energy, especially since Japan successfully exploited natural gas hydrate reservoirs in the South China Sea trough formation. The development of hydrate reservoir is highly valued by governments and scientific research institutions. The exploitation of hydrate reservoir by heat injection is considered as one of the effective and feasible methods, but the obvious shortcoming is that the heat loss is large and the heat utilization ratio is not high. Therefore, the heat front moving law of hydrate reservoir heat injection mining is a key subject that needs to be studied urgently. The theoretical study model of thermal front can be divided into three types according to the different emphases: heat conduction model, convection heat transfer model and energy conservation model. The emphasis of each model is different, and the composition of mathematical model is also different. Considering the factors of the model and the integrality of the mathematical model, Selim model and Macguire model are considered. The leading edge displacement model is a more comprehensive model. The experimental study of hot front can be divided into one-dimensional sand pipe experiment and two-dimensional plate model. The one-dimensional experimental results show that the position and time of the thermal front are approximately linear in the process of gas hydrate reservoir exploitation by injecting heat, and the two dimensional experimental results show that the position and time of the thermal front are parabolic. Geological factors and heat injection factors affect the movement of thermal front at the same time. Under experimental conditions, the higher the saturation and permeability of hydrate reservoir, the slower the movement of thermal front, the initial temperature of hydrate reservoir, the temperature and velocity of heat injection process, The higher the salinity and the heat injection, the faster the moving of the thermal front, but not the linear increasing relationship, which indicates that there are the best conditions of heat injection, under which the moving velocity of the thermal front is the best. Compared with the theoretical and experimental results of the thermal front, it is found that the calculation results of the one-dimensional thermal front theoretical model are quite different from the experimental results, and an improved one-dimensional thermal front theoretical calculation model needs to be proposed, and the sensitivity of the influencing factors is consistent. The calculated results of the two-dimensional thermal front theoretical model are in good agreement with the experimental results. In the sensitivity analysis of the influencing factors, the front-edge displacement model is also consistent with the experimental results. It is recommended as an ideal theoretical model for two-dimensional thermal front calculation.
【學(xué)位授予單位】:中國(guó)石油大學(xué)(華東)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TE377
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 阮徐可;李小森;徐純剛;張郁;顏克鳳;;天然氣水合物降壓聯(lián)合井壁加熱開(kāi)采的數(shù)值模擬[J];化工學(xué)報(bào);2015年04期
2 劉樂(lè)樂(lè);魯曉兵;張旭輝;;天然氣水合物分解區(qū)演化數(shù)值分析[J];石油學(xué)報(bào);2014年05期
3 李淑霞;曹文;李杰;高永海;;天然氣水合物注熱水開(kāi)采熱前緣移動(dòng)規(guī)律實(shí)驗(yàn)研究[J];現(xiàn)代地質(zhì);2014年03期
4 李明川;樊栓獅;魯明晶;;天然氣水合物熱水分解前緣一維質(zhì)量傳遞數(shù)學(xué)模型[J];高;瘜W(xué)工程學(xué)報(bào);2014年02期
5 李明川;樊栓獅;;天然氣水合物注熱水分解前緣熱作用因素分析[J];海洋學(xué)報(bào)(中文版);2012年05期
6 李明川;陳月明;;多孔介質(zhì)中天然氣水合物注熱水分解實(shí)驗(yàn)研究[J];東華理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
7 李明川;樊栓獅;;天然氣水合物熱分解實(shí)驗(yàn)研究[J];河南科學(xué);2011年03期
8 李淑霞;郝永卯;陳月明;;多孔介質(zhì)中天然氣水合物注熱鹽水分解實(shí)驗(yàn)研究[J];太原理工大學(xué)學(xué)報(bào);2010年05期
9 張旭輝;劉艷華;李清平;趙京;王愛(ài)蘭;;沉積物中導(dǎo)熱體周?chē)衔锓纸夥秶芯縖J];力學(xué)與實(shí)踐;2010年02期
10 李淑霞;姜興興;姜漢橋;李清平;;天然氣水合物藏注熱開(kāi)采敏感參數(shù)分析[J];石油鉆采工藝;2010年02期
相關(guān)博士學(xué)位論文 前1條
1 李明川;多孔介質(zhì)中天然氣水合物注熱水分解理論及實(shí)驗(yàn)研究[D];西南石油學(xué)院;2005年
相關(guān)碩士學(xué)位論文 前1條
1 夏f^冉;天然氣水合物藏物性參數(shù)及注熱開(kāi)采實(shí)驗(yàn)研究[D];中國(guó)石油大學(xué);2011年
,本文編號(hào):2050019
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2050019.html