化學驅分質工具對溶液流動影響及工具優(yōu)選研究
本文選題:分質注入工具 + 黏度; 參考:《東北石油大學》2017年碩士論文
【摘要】:目前大慶油田驅替技術已經(jīng)從傳統(tǒng)水驅逐漸向化學驅進行改變,在薩中等主力區(qū)塊高滲透油層已經(jīng)基本完成了聚驅,大慶油田驅替下一步目標是對低滲透油層進行高效開采。在原有籠統(tǒng)注入工藝技術中,由于聚合物溶液或三元復合溶液對一些油層配伍性較差,在驅替階段流向了高滲透已開采油層,達不到針對低滲透油層的開采效果。為了提高整體開發(fā)效果,充分完成對低滲透層系的原油開采,大慶油田提出了單管多層分質分壓注入工藝技術。本文通過對流經(jīng)分質工具前后溶液的變化進行研究,得到相應數(shù)據(jù),結合現(xiàn)場實驗數(shù)據(jù)完成對分質工具的結構優(yōu)選。首先,利用FLUENT軟件,對不同結構的分質注入工具進行驅替液流經(jīng)前后的流場分析,得出溶液流經(jīng)前后速度、壓力、湍動能的分布情況以及相應的參數(shù)變化,明確不同結構工具對溶液壓力、流速、湍動能的影響:相同條件下直徑為2mm的分注工具壓降最大;直徑越大,軸向速度維持距離越長;直徑越大,軸向中心線兩側湍動能分布越均勻。其次,利用靜態(tài)力學實驗測試驅替溶液過不同直徑分質工具前后黏彈性變化,得出驅替溶液黏度參數(shù)變化數(shù)值并利用第一法向應力差分析不同直徑分質工具對流過溶液彈性影響。實驗結果表明,溶液的粘度隨剪切速率增加而降低,并呈冪律規(guī)律;而溶液的第一法向應力差隨剪切速率的增加逐漸增加,表現(xiàn)為線性規(guī)律;隨著聚合物質量濃度的增加,溶液的粘彈性增高;經(jīng)過分質工具后的溶液粘彈性與未經(jīng)處理前的溶液粘彈性規(guī)律一致,但各溶液的粘彈性均出現(xiàn)了不同程度的下降。最后,利用計算機編程技術,結合溶液流過工具前后各項數(shù)據(jù)變化以及現(xiàn)場工具需求,針對化學驅分質工具優(yōu)選進行可視化編程,進行現(xiàn)場試驗驗證,并得出結論:軟件具有一定準確性,大大提高了工具優(yōu)選的效率以及準確性。本文研究內容對油田現(xiàn)場分層注采過程中分質工具的優(yōu)選提供一定的輔助指導意義。
[Abstract]:At present, the displacement technology of Daqing oilfield has been changed from traditional water flooding to chemical flooding, and the polymer flooding has been basically completed in the high permeability reservoir in the middle main area of sa. The next goal of displacement in Daqing oilfield is to develop the low permeability reservoir efficiently. In the original general injection technology, due to the poor compatibility of polymer solution or ternary solution to some reservoirs, it flows to the high permeability oil layer in the displacement stage, which can not reach the recovery effect for the low permeability reservoir. In order to improve the overall development effect and fully complete the crude oil production of low permeability series, Daqing Oilfield has put forward the technology of single pipe multilayer split pressure injection. In this paper, the changes of the solution before and after passing through the dividing tool are studied, the corresponding data are obtained, and the structure of the quality separation tool is optimized by combining the field experimental data. Firstly, by using fluent software, the flow field before and after the displacement fluid flow is analyzed with different structure mass separation injection tools, and the distribution of the velocity, pressure, turbulent kinetic energy and the corresponding parameters before and after the solution passing through are obtained. The influence of different structure tools on the pressure, velocity and turbulent kinetic energy of the solution is determined. The pressure drop of the injection tool with diameter 2mm is the largest under the same conditions; the larger the diameter, the longer the maintaining distance of axial velocity, the larger the diameter, the larger the pressure drop is. The distribution of turbulent kinetic energy on both sides of axial center line is more uniform. Secondly, the viscoelastic changes before and after displacing solution with different diameters were measured by static mechanical experiment. The change value of viscosity parameters of displacement solution was obtained and the effect of different diameters on the elasticity of solution was analyzed by using the first normal stress difference. The experimental results show that the viscosity of the solution decreases with the increase of the shear rate and follows the law of power law, while the first normal stress difference of the solution increases gradually with the increase of the shear rate, showing a linear rule, and with the increase of the mass concentration of the polymer, The viscoelasticity of the solution is increased, and the viscoelasticity of the solution is consistent with that of the untreated solution, but the viscoelasticity of each solution decreases to some extent. Finally, using computer programming technology, combined with the changes of the data before and after the solution flow through the tool and the field tool requirements, visual programming was carried out for the chemical flooding quality separation tools, and the field test was carried out. It is concluded that the software has certain accuracy, which greatly improves the efficiency and accuracy of tool selection. The research content of this paper provides some auxiliary guidance significance for the optimization of the quality separation tools in the field injection and production process of stratified oil fields.
【學位授予單位】:東北石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TE357.46
【參考文獻】
相關期刊論文 前10條
1 張志熊;牛貴鋒;王良杰;黃澤超;毛慶凱;;海上油田注聚井單管分層注聚測調新技術[J];石油機械;2016年10期
2 李秋言;侯吉瑞;謝東海;趙鳳蘭;宋兆杰;;分層注采三元復合驅對大慶二類油層適應性評價[J];科學技術與工程;2016年28期
3 王龍;;提高聚合物驅分層注入測調效率[J];化學工程與裝備;2016年06期
4 班久慶;賀欣;;化學驅分注工具優(yōu)選軟件開發(fā)[J];化工設計通訊;2016年02期
5 郭宇軒;;C語言發(fā)展歷史分析[J];信息與電腦(理論版);2016年02期
6 張書進;劉崇江;蔡萌;楊志剛;梁福民;;三元復合驅分質注入工具的結構優(yōu)化[J];石油鉆采工藝;2016年01期
7 宋占勝;耿春玲;;應用輔助軟件提高采油工程規(guī)劃編制工作效率和質量[J];內蒙古石油化工;2014年23期
8 黃斌;徐德奎;蔡萌;周萬富;李朦;付思強;吳天奇;傅程;;基于正交試驗法和數(shù)值仿真的環(huán)形降壓槽結構優(yōu)化[J];數(shù)學的實踐與認識;2014年22期
9 周建釗;徐肖攀;朱自成;劉宇晨;儲偉俊;賴思偉;;基于ICEM CFD與ANSYS FLUENT的熱力射流噴嘴流場分析[J];機床與液壓;2014年17期
10 郭鵬;葉學勤;徐磊;吳剛;白江;;注水井分注工具打撈技術優(yōu)化[J];內蒙古石油化工;2014年11期
相關會議論文 前3條
1 王晶;;聚合物驅分層注入工具性能提升技術研究[A];《采油工程文集》2015年第2輯[C];2015年
2 姜士彪;;大慶油田弱堿三元復合驅分注機理及清防垢技術研究[A];《采油工程文集》2014年第二輯[C];2014年
3 高光磊;楊慧;李海成;蔡萌;梁福民;;大慶油田聚合物驅分注技術現(xiàn)狀分析[A];《采油工程》第1卷第2冊[C];2011年
相關博士學位論文 前4條
1 賈江濤;稠油熱采數(shù)值模擬自適應網(wǎng)格法計算軟件開發(fā)研究及實例應用[D];中國科學技術大學;2014年
2 劉鋒;吐哈油田企業(yè)信息化模型與方法研究[D];中國地質大學;2013年
3 馬海佳;聚合物驅分層注入技術研究[D];大慶石油學院;2008年
4 張曉東;聚合物驅提高原油采收率的最優(yōu)控制方法研究[D];中國石油大學;2008年
相關碩士學位論文 前8條
1 趙樹杰;稠油油藏分層注采管柱研究[D];東北石油大學;2015年
2 王光;基于C#的監(jiān)控組態(tài)軟件開發(fā)[D];哈爾濱工業(yè)大學;2012年
3 張林默;三元復合驅分注管柱參數(shù)優(yōu)化設計[D];大慶石油學院;2010年
4 王鈺;基于Skyline技術的油田地面三維可視化開發(fā)與實現(xiàn)[D];長安大學;2009年
5 宋輝;喇嘛甸油田二類油層聚驅分質分層注入研究[D];大慶石油學院;2009年
6 張艷華;ICEM中PIM層的建模技術與工具實現(xiàn)[D];哈爾濱工業(yè)大學;2007年
7 鄧莎萍;油田集輸站監(jiān)控系統(tǒng)開發(fā)與應用[D];西安建筑科技大學;2007年
8 姜常坤;聚驅小直徑分注管柱及配套工具的設計和應用[D];大慶石油大學;2006年
,本文編號:2021359
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2021359.html