帶壓作業(yè)閘板防噴器膠芯動(dòng)密封性能仿真
本文選題:帶壓作業(yè) + 膠芯; 參考:《長(zhǎng)江大學(xué)》2017年碩士論文
【摘要】:帶壓作業(yè)能夠減輕對(duì)產(chǎn)層的污染,最大限度地保護(hù)原始地層,改善作業(yè)環(huán)境,同時(shí)給油田中后期的穩(wěn)產(chǎn)帶來(lái)較大的保障,其獨(dú)特的優(yōu)勢(shì)已經(jīng)得到業(yè)界的普遍認(rèn)可。閘板防噴器是帶壓作業(yè)設(shè)備的核心裝置,通過(guò)防噴器膠芯的開啟和關(guān)閉來(lái)控制井口密封,實(shí)現(xiàn)在線密封,從而完成帶壓作業(yè)過(guò)程。因此,閘板防噴器膠芯的密封能力、壽命成為帶壓作業(yè)設(shè)備的關(guān)鍵因素。雖然,國(guó)內(nèi)研制的閘板防噴器密封壓力越來(lái)越高,閘板防噴器壓力等級(jí)可以達(dá)到140MPa,但在帶壓作業(yè)領(lǐng)域利用防噴器進(jìn)行動(dòng)密封或旋轉(zhuǎn)作業(yè)都存在問(wèn)題,密封件的壽命也低于國(guó)外同類產(chǎn)品的一半。目前國(guó)內(nèi)用于帶壓作業(yè)的閘板防噴器膠芯的動(dòng)密封壓力不大于35MPa,這也制約了國(guó)產(chǎn)帶壓作業(yè)裝置用于大修、超高壓、特殊類型井帶壓作業(yè)的發(fā)展。因此研制動(dòng)密封大于35MPa帶壓作業(yè)閘板防噴器膠芯并使之國(guó)產(chǎn)化是十分必要而又刻不容緩。首先,本文通過(guò)分析帶壓作業(yè)裝置的工作流程,得到帶壓作業(yè)閘板防噴器膠芯的工況條件和載荷特征;同時(shí)研究了國(guó)內(nèi)外現(xiàn)有的帶壓作業(yè)閘板防噴器膠芯結(jié)構(gòu)、材料和工作原理。結(jié)合工程實(shí)際,對(duì)現(xiàn)場(chǎng)使用的帶壓閘板防噴器膠芯進(jìn)行了力學(xué)行為分析,并建立帶壓作業(yè)閘板防噴器膠芯的物理模型;根據(jù)流體密封理論和密封準(zhǔn)則分析膠芯的靜密封機(jī)理和管柱運(yùn)動(dòng)條件下膠芯的動(dòng)密封機(jī)理。其次,通過(guò)對(duì)常用的帶壓作業(yè)閘板防噴器膠芯的橡膠材料進(jìn)行力學(xué)性能試驗(yàn),得到其應(yīng)力應(yīng)變曲線,并將實(shí)驗(yàn)結(jié)果與常用的幾種橡膠本構(gòu)關(guān)系進(jìn)行軟件擬合,確定適用于閘板防噴器膠芯的橡膠材料本構(gòu)模型;然后基于該橡膠材料本構(gòu)模型,利用ABAQUS軟件建立閘板防噴器膠芯密封管柱的靜態(tài)仿真模型,得到管柱與膠芯在相對(duì)靜止?fàn)顟B(tài)下膠芯的應(yīng)力分布情況,同時(shí)與現(xiàn)場(chǎng)使用的膠芯的失效形式進(jìn)行比較分析,以驗(yàn)證其正確性;在靜態(tài)仿真模型基礎(chǔ)上,分析井筒壓力、活塞桿液壓力、橡膠材料等因素對(duì)閘板防噴器膠芯Mises應(yīng)力、接觸應(yīng)力等參數(shù)的大小與分布情況的影響規(guī)律。探討帶壓閘板防噴器膠芯在不同工況條件組合下的靜密封性能,從而為膠芯的結(jié)構(gòu)尺寸優(yōu)化和工況條件選擇提供參考。再次,在靜態(tài)仿真模型基礎(chǔ)上,基于膠芯密封機(jī)理,建立帶壓閘板防噴器膠芯密封管柱動(dòng)態(tài)仿真模型,得到管柱相對(duì)膠芯上下運(yùn)動(dòng)時(shí),膠芯動(dòng)態(tài)密封狀態(tài)的應(yīng)力分布規(guī)律,并通過(guò)與現(xiàn)場(chǎng)使用的膠芯失效形式進(jìn)行對(duì)比分析,判斷仿真的可靠性;在動(dòng)態(tài)仿真模型的基礎(chǔ)上,分析起下管柱、井筒壓力、摩擦系數(shù)、管柱運(yùn)動(dòng)速度、耐磨塊結(jié)構(gòu)參數(shù)等因素對(duì)閘板防噴器膠芯Mises應(yīng)力、接觸應(yīng)力等參數(shù)的大小與分布情況的影響規(guī)律。探討帶壓閘板防噴器膠芯在不同工況條件組合下的動(dòng)密封性能,從而為膠芯的結(jié)構(gòu)尺寸優(yōu)化和工況條件選擇提供參考。最后,基于有限元分析規(guī)律,優(yōu)選膠芯的材料和耐磨塊的結(jié)構(gòu)尺寸。得到主要結(jié)論如下:(1)Ogden模型最能表征膠芯常用橡膠材料的本構(gòu)關(guān)系。(2)密封面間的接觸壓力是衡量膠芯密封性能的主要標(biāo)準(zhǔn)。(3)液壓封井力不能過(guò)大,否則膠芯的Mises應(yīng)力超過(guò)材料的許用應(yīng)力值,導(dǎo)致膠芯的使用壽命降低;在井筒壓力的作用下,橡膠基體密封面上靠近閘板殼體上部區(qū)域內(nèi)的疲勞性損壞最嚴(yán)重;(4)井筒壓力是造成耐磨塊上部磨損嚴(yán)重的主要因素;管柱與耐磨塊圓弧面間的摩擦系數(shù)不應(yīng)過(guò)大,否者會(huì)加速膠芯的磨損。(5)橡膠基體材料為硬度為75的丁腈和耐磨塊參數(shù)s為10、k為8、寬度為108時(shí),膠芯可以用于動(dòng)密封壓力不超過(guò)35 MPa的帶壓作業(yè)裝置。橡膠基體材料硬度為80的丁腈和耐磨塊參數(shù)s為10、k為8、寬度為108時(shí),膠芯的動(dòng)密封壓力可達(dá)50MPa,可以用于動(dòng)密封壓力不超過(guò)50MPa的帶壓作業(yè)裝置。
[Abstract]:Pressure operation can reduce the pollution of the production layer, maximize the protection of the original formation, improve the operating environment, and bring greater guarantee to the stable production in the middle and late stages of the oil field. Its unique advantages have been widely recognized by the industry. The gate blowout preventer is a core device with pressure operating equipment, through the opening and closing of the blowout preventer core. Controlling the wellhead seal to realize the on-line seal, thus completing the operation process of the belt pressure. Therefore, the seal ability of the gate blowout preventer is the key factor for the pressure working equipment. Although the seal pressure of the sluice blowout preventer is getting higher and higher, the pressure grade of the sluice blowout preventer can reach 140MPa, but it is used in the field of pressure operation. There are problems in the blowout preventer's dynamic seal or rotation operation, and the life of the seal is also lower than half of the foreign products of the same kind. At present, the dynamic seal pressure of the rubber wick used in the sluice blowout preventer is not more than 35MPa, which also restricts the development of domestic pressure operation equipment for large repair, ultra high pressure, and special type of well pressure operation. It is very necessary and urgent to make the brake seal of the brake shoe blowout preventer and make it more domestic. First, through the analysis of the working flow of the working device of the belt press, the working condition and load characteristics of the rubber core of the operation gate are obtained. At the same time, the existing brake plate with pressure operation at home and abroad is studied. The structure, material and working principle of the shotcrete core are made. The mechanical behavior of the rubber core of the blowout blowout preventer used in the field is analyzed in combination with the engineering practice. The physical model of the rubber core of the blowout preventer with pressure operation is established, and the static seal mechanism of the rubber core and the moving density of the rubber core are analyzed according to the fluid seal theory and the seal criterion. Secondly, through the mechanical performance test on the rubber material of the commonly used pressure operation gate blowout preventer rubber core, the stress-strain curve of the rubber material is obtained, and the experimental results are fitted with several commonly used rubber constitutive relations to determine the rubber material constitutive model suitable for the rubber core of the sluice blowout preventer, and then based on the rubber material. The material constitutive model is used to establish the static simulation model of the seal pipe column of the sluice blowout preventer with ABAQUS software, and the stress distribution of the core of the pipe and the rubber core in the relative static state is obtained. At the same time, it is compared with the failure form of the rubber core used in the field to verify its correctness. On the basis of the static simulation model, the wellbore is analyzed. Pressure, hydraulic pressure of piston rod, rubber material and other factors affecting the size and distribution of Mises stress, contact stress and other parameters of the sluice blowout preventer. The static sealing performance of the rubber core of the blowout blowout preventer under different working conditions is discussed, thus providing a reference for the optimization of the size of the rubber core and the selection of the working conditions. On the basis of the static simulation model, based on the mechanism of rubber core sealing, the dynamic simulation model of the rubber core seal of the blowout blowout preventer is established, and the stress distribution law of the dynamic sealing state of the rubber core is obtained, and the reliability of the simulation is judged by the comparison and analysis with the form of the rubber core failure used in the field. On the basis of the dynamic simulation model, the influence of the pipe column, wellbore pressure, friction coefficient, the velocity of the pipe column motion and the structural parameters of the wear-resistant block on the size and distribution of the Mises stress, contact stress and other parameters of the blowout preventer are analyzed. The dynamic tightness of the rubber core in the blowout blowout preventer with different working conditions is discussed. The structure size optimization and working condition selection of the rubber core are provided as a reference. Finally, based on the finite element analysis, the structure dimensions of the material and the wear-resistant block are optimized. The main conclusions are as follows: (1) the constitutive relation of the rubber material used in the rubber core can be characterized most by the Ogden model. (2) the contact pressure between the sealing surfaces is a measure of the glue. The main standard of core sealing performance. (3) the hydraulic sealing ability can not be too large, otherwise the Mises stress of the rubber core exceeds the allowable stress value of the material, which leads to the decrease of the service life of the rubber core; under the action of the wellbore pressure, the fatigue damage of the rubber matrix sealing surface near the upper part of the gate shell is the most serious; (4) the wellbore pressure is caused by the wear-resistant block. The main factor of serious wear is that the friction coefficient between the cylinder and the arc surface should not be too large, or the wear of the rubber core will be accelerated. (5) the rubber matrix material is 75, the parameters s of nitrile and wear resistance block are 10, K is 8, and the width is 108, the rubber core can be used for the belt pressure operating device with the dynamic seal pressure not more than 35 MPa. The parameter s of nitrile and wear-resistant block with the material hardness of 80 is 10, K is 8 and the width is 108, the dynamic seal pressure of the rubber core can reach 50MPa, and it can be used for the belt pressure operation device with the dynamic seal pressure not more than 50MPa.
【學(xué)位授予單位】:長(zhǎng)江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE931.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;榮盛大變徑閘板防噴器研制成功[J];石油礦場(chǎng)機(jī)械;2005年01期
2 陳惠琴;唐波;何為;;閘板防噴器密封失效原因及對(duì)策分析[J];天然氣工業(yè);2006年11期
3 呂衛(wèi)軍;高長(zhǎng)福;馬盼群;張慶昌;;閘板防噴器修理質(zhì)量可靠性研究[J];石油工業(yè)技術(shù)監(jiān)督;2007年10期
4 何霞;王云海;王國(guó)榮;田野;嚴(yán)永發(fā);李軍剛;;閘板防噴器故障樹分析[J];鉆采工藝;2010年06期
5 張寶生;陳家慶;許宏奇;蘇尚文;;可變徑閘板防噴器前密封封井過(guò)程受力模擬研究[J];石油礦場(chǎng)機(jī)械;2006年S1期
6 陳紹偉;萬(wàn)夫;劉炯;徐潘;曾鐘;;閘板防噴器技術(shù)進(jìn)展研究[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年04期
7 肖力彤;宋振華;鄭泳;李壯;倪文文;劉勇;;閘板防噴器側(cè)門密封失效研究[J];鉆采工藝;2009年05期
8 呂海龍;韓書祥;范曉賢;笈業(yè);;手動(dòng)快換閘板防噴器研制與應(yīng)用[J];石油礦場(chǎng)機(jī)械;2012年03期
9 趙磊;馮進(jìn);金亞?wèn)|;;關(guān)于閘板防噴器側(cè)門密封方式的探討[J];科技信息;2013年06期
10 唐洋;劉清友;杜利;李軍剛;;閘板防噴器殼體應(yīng)力分布試驗(yàn)測(cè)試與分析[J];石油機(jī)械;2013年07期
相關(guān)會(huì)議論文 前2條
1 林軍;黃茂林;;閘板防噴器膠芯的變形研究[A];第十一屆全國(guó)機(jī)構(gòu)學(xué)年會(huì)暨首屆青年機(jī)構(gòu)學(xué)研討會(huì)論文集[C];1998年
2 張寶生;陳家慶;;可變徑閘板防噴器結(jié)構(gòu)研究[A];第二屆中國(guó)CAE工程分析技術(shù)年會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)通訊員 王振江 馬校生;華北榮盛何以風(fēng)光無(wú)限[N];中國(guó)石油報(bào);2003年
2 王振江 通訊員 馬校生;我國(guó)首臺(tái)大變徑閘板防噴器問(wèn)世[N];中國(guó)石油報(bào);2004年
相關(guān)碩士學(xué)位論文 前8條
1 黃磊;閘板防噴裝置的CAE建模及關(guān)鍵部件分析[D];東北石油大學(xué);2015年
2 黃顯萍;剪切閘板防噴器工作機(jī)理分析及結(jié)構(gòu)改進(jìn)[D];西南石油大學(xué);2014年
3 胡霞;FZ35-105閘板防噴器膠芯密封機(jī)理研究[D];長(zhǎng)江大學(xué);2016年
4 孫瑞雪;閘板防噴器開關(guān)井控制算法研究與仿真設(shè)計(jì)[D];東北石油大學(xué);2016年
5 陳婷;帶壓作業(yè)閘板防噴器膠芯動(dòng)密封性能仿真[D];長(zhǎng)江大學(xué);2017年
6 王道寶;閘板防噴器可靠性研究[D];中國(guó)石油大學(xué);2010年
7 許宏奇;閘板防噴器關(guān)鍵密封件設(shè)計(jì)與研究[D];中國(guó)石油大學(xué);2007年
8 艾白布·阿不力米提;深水閘板防噴器及其電磁控制閥的研究[D];中國(guó)石油大學(xué)(華東);2013年
,本文編號(hào):2012754
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/2012754.html