油氣管道敷設(shè)方式對含管邊坡穩(wěn)定性影響的研究
本文選題:油氣管道 + 橫向敷設(shè)。 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:目前,我國各類輸油氣管道的總里程累計已突破12萬公里,躍居世界前兩位。其中,西氣東輸一、二、三線工程全部貫通,且大部分管道分布在青海、甘肅、陜西等黃土高原地區(qū),該地區(qū)地質(zhì)情況復(fù)雜,多高山丘陵,管道在該地區(qū)的敷設(shè)難免遇到大斜坡及高邊坡情況。本次研究從管道地質(zhì)災(zāi)害的現(xiàn)場調(diào)研出發(fā),分析了各類含管邊坡的坡面水毀以及崩塌、滑坡的危害特征;使用FLAC有限差分軟件,在建立了11種管道沿邊坡橫向敷設(shè)的工況和4種管道沿邊坡縱向敷設(shè)的工況的基礎(chǔ)上,分析了各種工況下邊坡的剪切應(yīng)變率、水平位移以及安全系數(shù)等指標(biāo),研究發(fā)現(xiàn):(1)管道的橫向鋪設(shè)(沿邊坡的走向鋪設(shè))對邊坡安全系數(shù)的影響與未鋪設(shè)管道時邊坡滑動面的位置有關(guān),當(dāng)管道恰好位于滑動面位置時會減小邊坡的安全系數(shù),當(dāng)管道位于滑動面的兩側(cè),即位于滑動區(qū)和穩(wěn)定區(qū)時,對邊坡的安全系數(shù)影響甚微。(2)管道的縱向鋪設(shè)(沿邊坡的坡面鋪設(shè))時會在一定程度上提高邊坡的安全系數(shù),隨著管道與坡面夾角的逐漸增大,邊坡的安全系數(shù)逐漸減小,但是其均大于原邊坡的安全系數(shù)。對邊坡的穩(wěn)定性而言,管道的縱向鋪設(shè)是有利的,但是對管道的受力而言則不利。(3)通過對某礦區(qū)內(nèi)一含管邊坡加固工程案例的計算分析,論證了預(yù)應(yīng)力錨索在加固油氣管道邊坡工程方面的適用性與可靠性,在原始狀態(tài)下邊坡的安全系數(shù)為0.94,支護(hù)后邊坡的安全系數(shù)增大至1.28,符合規(guī)范的要求,同時在管道周圍邊坡的水平和豎向位移減小,以及管線周圍的應(yīng)力更加趨于合理,無明顯的應(yīng)力集中現(xiàn)象,即通過支護(hù)體系,邊坡整體的受力以及位移得到了很大的改善,管道也處于安全運(yùn)營狀態(tài)。本次研究立足于油氣管道邊坡工程的實際需要,重點研究了管道敷設(shè)方式對邊坡穩(wěn)定性的影響,同時通過含管邊坡加固工程案例,給出加固建議,希望可以為含管邊坡防護(hù)治理提供有益的幫助。
[Abstract]:At present, the total mileage of various oil and gas pipelines in China has exceeded 120000 km, ranking first two in the world. Among them, the first, second, and third lines of gas transmission from the west to the east are all through, and most of the pipelines are distributed in the Loess Plateau areas such as Qinghai, Gansu, Shaanxi and so on. The geological conditions in this area are complex and there are many high mountains and hills. Large slopes and high slopes are inevitably encountered in the laying of pipelines in this area. Based on the field investigation of geological hazards of pipelines, the characteristics of water damage, collapse and landslide of slope with pipe are analyzed. FLAC finite difference software is used. On the basis of setting up the working conditions of 11 kinds of pipe laying along the side slope and 4 kinds of pipeline laying along the slope longitudinally, the shear strain rate, horizontal displacement and safety factor of the slope under various working conditions are analyzed. It is found that the influence of the transverse laying of the pipeline (along the slope direction) on the slope safety factor is related to the position of the slip surface of the slope when the pipeline is not laid, and the safety factor of the slope will be reduced when the pipeline is just located on the sliding surface. When the pipeline is located on both sides of the sliding surface, that is, in the sliding area and the stable area, the safety factor of the slope will be improved to a certain extent when the longitudinal laying of the pipeline (along the slope surface of the slope) has little effect on the safety factor of the slope. With the increase of the angle between pipeline and slope, the safety factor of slope decreases gradually, but it is larger than that of the original slope. For the stability of the slope, the longitudinal laying of the pipeline is advantageous, but the stress of the pipeline is unfavorable. The applicability and reliability of prestressed anchor cable in reinforcing oil and gas pipeline slope engineering are demonstrated. In the original condition, the slope safety factor is 0.94, and the slope safety factor increases to 1.28 after supporting, which meets the requirements of the code. At the same time, the horizontal and vertical displacement of the slope around the pipeline decreases, and the stress around the pipeline tends to be more reasonable. There is no obvious stress concentration phenomenon, that is, through the support system, the stress and displacement of the slope as a whole have been greatly improved. The pipeline is also in safe operation. Based on the actual needs of oil and gas pipeline slope engineering, this study focuses on the influence of pipeline laying mode on slope stability. At the same time, through the case of pipeline slope reinforcement project, the reinforcement suggestions are given. It is hoped that it can provide beneficial help for the protection and treatment of the slope containing pipe.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE973;TU43
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余雷;;輸氣管道水毀災(zāi)害的分析研究[J];商;2015年20期
2 張恒;范偉;;長-呼原油管道地質(zhì)災(zāi)害分布特征及風(fēng)險評價[J];吉林水利;2014年05期
3 黃鵬;;澀寧蘭長輸管道沿程地質(zhì)災(zāi)害類型及機(jī)理探析[J];山西建筑;2014年04期
4 王君;;長輸管道水害分析及保護(hù)措施[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年20期
5 王秀麗;鄭國足;;新型帶彈簧支撐抗沖擊研究及其在泥石流攔擋壩中的應(yīng)用[J];中國安全科學(xué)學(xué)報;2013年02期
6 武海剛;;淺談長輸管道山區(qū)施工技術(shù)[J];青海石油;2012年04期
7 劉傳正;;汶川地震區(qū)文家溝泥石流成因模式分析[J];地質(zhì)論評;2012年04期
8 于博;武志明;龐麗娟;;水工保護(hù)在管道建設(shè)中的實踐[J];油氣田環(huán)境保護(hù);2012年03期
9 尚小衛(wèi);谷令強(qiáng);楊進(jìn)錄;;黃土濕陷性對天然氣長輸管道的影響分析[J];西部探礦工程;2012年04期
10 馬瑛;陳登平;藺鵬臻;;埋置式石油管道考慮懸空的正常使用性能分析[J];蘭州交通大學(xué)學(xué)報;2011年04期
相關(guān)博士學(xué)位論文 前3條
1 賈亮;加筋擋土墻的地震作用及動力穩(wěn)定性分析[D];蘭州理工大學(xué);2011年
2 葛琪;基于凍融界面強(qiáng)度損傷的季凍區(qū)土質(zhì)邊坡穩(wěn)定性研究[D];吉林大學(xué);2010年
3 何永強(qiáng);強(qiáng)濕陷性黃土地區(qū)擠密樁復(fù)合地基的理論分析與試驗研究[D];蘭州理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 周欣海;油氣管道黃土濕陷性危害模糊綜合評價[D];蘭州理工大學(xué);2016年
2 張雷;秦巴山區(qū)公路路塹邊坡防護(hù)及病害治理研究[D];長安大學(xué);2012年
3 張博;澀寧蘭輸氣管道黃土地區(qū)地質(zhì)災(zāi)害防治措施研究[D];蘭州大學(xué);2012年
4 鄧東平;用于三維復(fù)雜土坡穩(wěn)定性分析的滑動面搜索新方法[D];中南大學(xué);2010年
5 廖毅;山區(qū)公路邊坡失穩(wěn)災(zāi)害的研究與防治[D];中南大學(xué);2008年
6 鄭善義;框架預(yù)應(yīng)力錨桿支護(hù)結(jié)構(gòu)的設(shè)計與分析研究[D];蘭州理工大學(xué);2007年
7 陳強(qiáng);公路邊坡穩(wěn)定性研究與分析及綜合治理[D];湖南大學(xué);2005年
,本文編號:1973196
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1973196.html