聚丙烯酰胺類耐溫抗鹽聚合物的合成及其性能研究
本文選題:水溶性聚合物 + 驅(qū)油聚合物 ; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:針對高溫高鹽油藏對驅(qū)油聚合物的要求,目前廣泛使用的驅(qū)油聚合物部分水解聚丙烯酰胺由其結(jié)構(gòu)原因存在的泵送時機械降解嚴重,剪切穩(wěn)定性差,耐酸性差,耐高溫高鹽性差等局限性已難以滿足高溫高礦化度油藏的粘度要求。針對耐溫耐鹽聚合物的關(guān)注度日漸加重;撬猁}型聚丙烯酰胺類耐溫耐鹽性高且水化能力強,采用的自由基水溶液聚合法經(jīng)濟安全易工業(yè)化。含有磺酸基團的2-丙烯酰胺基-2-甲基丙磺酸(AMPS)包含活潑雙鍵,易與丙烯酰胺(AM)聚合;同時有大的支鏈,使聚合物主鏈的剛性得到較大的提高,增加聚合物的熱穩(wěn)定性;磺酸基團增加共聚物的水溶性和水化能力,具有較強抗溫抗鹽性能。在兩種單體聚合體系中添加第三單體丙烯酰嗎啉(ACMO)制備的聚合物中嗎啉環(huán)的兩親結(jié)構(gòu)和氫鍵作用也可有效提高聚合物的性能。丙烯酰胺類聚合過程伴隨放熱,僅使用某種引發(fā)劑較難提高分子鏈的長度,復(fù)合引發(fā)體系可以使溶液中自由基量保持較低,可以提高產(chǎn)品分子量。研究主要內(nèi)容包含以下幾個部分:1.采用自由基水溶液聚合法制備磺酸鹽單體AMPS與AM的共聚物,采用不同的引發(fā)體系合成P(AM/AMPS),研究了引發(fā)劑濃度,引發(fā)劑配比,單體濃度,單體配比,引發(fā)溫度,聚合體系pH值等對聚合物表觀粘度的影響,測定聚合物的固含量和水解度,并通過核磁共振、紅外光譜和元素分析確定樣品的結(jié)構(gòu),并測試其熱性質(zhì)。偶氮二異丁咪唑啉鹽酸鹽(AIBI)/過硫酸鉀(KPS)構(gòu)成分段式復(fù)合引發(fā)體系,用正交試驗法探尋適宜聚合條件和研究各個因素對聚合物性能的影響。在單體濃度為20%,引發(fā)劑濃度0.05%,KPS:AIBI為1:2,引發(fā)溫度30 ℃下反應(yīng),聚合單體質(zhì)量配比AM:AMPS為1:1,聚合體系pH為8時,在25 ℃時500 mg/L P(AM/AMPS)水溶液的表觀黏度可達到110 mPa·s。β-二甲氨基丙腈(DMAPN)/KPS組成胺類氧化還原型復(fù)合引發(fā)體系,單體濃度20~25wt%,聚合單體質(zhì)量配比AM:AMPS為1:1,引發(fā)劑濃度為單體濃度的0.015%,KPS:DMAPN=1.05:1(摩爾比),引發(fā)溫度42℃,聚合時間為6h,聚合體系的pH值為9時,得到的聚合物有較高的水溶液表觀粘度和較強的抗Ca~(2+),Mg~(2+)能力。500mg/L的聚合物水溶液在25℃下的表觀黏度為96.20mPa·s,1500mg/L的聚合物的Ca~(2+)、Mg~(2+)(鹽水濃度200 mg/L)鹽溶液的表觀黏度為36.54 mPa·s、35.61 mPa·s。N,N,N',N'-四甲基-1,6-己二胺(TMHD)/KPS組成氧化還原型雙官能度復(fù)合引發(fā)體系,單體濃度為20~25 wt%,引發(fā)劑濃度為0.003%(摩爾比),聚合體系的pH值為8~9,聚合單體質(zhì)量配比AM:AMPS為1:1時,引發(fā)溫度為50℃,引發(fā)時間為3 h時,所得聚合物的粘度和抗鹽性均較高,在32868 mg/L的礦化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃時7.34 s~(-1)剪切率下的表觀粘度分別為30.09 mPa·s和18.16mPa.s。三段溫控式KPS/AIBI/DMAPMA多功能復(fù)合引發(fā)體系,1500 mg/L共聚物在在32868 mg/L的礦化水中,在85 ℃時,剪切率為7.34 s~(-1)時表觀粘度為18.69 mPa·s。結(jié)果表明,AMPS與AM的共聚物具有良好的抗溫抗鹽性能,且復(fù)合體系的使用有助于提高聚合物的性能。2.添加第三單體丙烯酰嗎啉(ACMO),采用自由基水溶液聚合法,以復(fù)合引發(fā)體系制備AM/AMPS/ACMO三元共聚物,研究了引發(fā)劑濃度,引發(fā)劑配比,單體濃度,單體配比,引發(fā)溫度,聚合體系pH值,ACMO添加量等對聚合物表觀粘度的影響,測定聚合物的固含量和水解度,并通過核磁共振、紅外光譜和元素分析確定聚合物的結(jié)構(gòu),研究了聚合物的熱性質(zhì)。N-(3-二甲氨基丙基)甲基丙烯酰胺(DMAPMA)/KPS組成胺基功能性復(fù)合引發(fā)體系,利用DMAPMA引發(fā)和聚合的雙重作用提高聚合物的分子量,引發(fā)劑濃度為0.0010%~0.0015%,單體濃度為20wt%,引發(fā)溫度為42℃,聚合反應(yīng)時間為4h,ACMO為5~10wt%,聚合體系pH值為9,所得聚合物的粘度和抗鹽性均較高。在32868 mg/L的礦化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃時7.34 s~(-1)剪切率下的表觀粘度分別為28.59 mPa·s和16.72 mPa·s。DMAPN/KPS組成胺類氧化還原型復(fù)合引發(fā)體系,引發(fā)平穩(wěn),引發(fā)效率高,引發(fā)劑濃度為0.005%,單體濃度為25 wt%,引發(fā)溫度為46~50 ℃,聚合反應(yīng)時間6 h,ACMO為1%(摩爾比),聚合體系pH值為9時可提高聚合物的耐溫耐鹽性。在32868 mg/L的礦化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃時7.34 s~(-1)剪切率下的表觀粘度分別為29.99 mPa-s和16.63 mPa·s。結(jié)果表明,第三單體ACMO的添加,復(fù)合引發(fā)體系的使用,可合成具有高的表觀粘度的耐溫耐鹽聚合物P(AM/AMPS/ACMO)。3.研究了 P(AM/AMPS)和P(AM/AMPS/ACMO)的溶液性質(zhì),聚合物的量和NaCl、CaCl2、MgCl2的量與溶液表觀粘度的相關(guān)性;頻率、溫度、無機鹽與聚合物溶液粘彈性的相關(guān)性;聚合物溶液的抗剪切和耐溫性能;聚合物溶液的抗老化性能。P(AM/AMPS)和P(AM/AMPS/ACMO)溶液在抗剪切、耐溫性、抗鹽性和抗老化性方面具有優(yōu)異的性能。
[Abstract]:In view of the requirements of high temperature and high salt reservoirs for oil displacement polymers, the widely used polymer partially hydrolyzed polyacrylamide (PAM), which is widely used at present, is seriously degraded in mechanical degradation, poor shear stability, poor acid resistance and poor high temperature and high salt tolerance, which is difficult to meet the viscosity requirements of high temperature and high salinity reservoirs. The concentration of temperature and salt resistant polymers is becoming more and more serious. The sulfonate polyacrylamide has high temperature and salt tolerance and strong hydration ability. The free radical water solution polymerization method is easy to industrialize the economic safety. The 2- acrylamide -2- methyl propane sulfonic acid (AMPS) containing sulfonic groups contains active double bonds, easy to polymerize with acrylamide (AM); at the same time there are large branches. Chains make the rigidity of the main chain of the polymer greatly improved, and increase the thermal stability of the polymer; the sulfonic group increases the water solubility and hydration ability of the copolymer, and has a strong anti temperature and salt resistance. The two parent structure and hydrogen bond of the morpholine ring in the polymer prepared by the two monomer polymerization system with third monomer acroleyl morpholine (ACMO) It can also improve the performance of the polymer effectively. The polymerization process of acrylamide is accompanied by heat release, and it is difficult to improve the length of the molecular chain with only a certain initiator. The compound initiating system can keep the free radical of the solution low and can improve the molecular weight of the product. The main contents of the study include the following parts: 1. the free radical solution polymerization method is used. The copolymers of sulfonate monomer AMPS and AM were prepared, and P (AM/AMPS) was synthesized by different initiating systems. The effects of initiator concentration, initiator ratio, monomer concentration, monomer ratio, initiating temperature, pH value of polymerization system on the apparent viscosity of polymer and the determination of the solid content and degree of hydrolysis of polymeric substances were investigated, and NMR, IR spectra were used. Elemental analysis determines the structure of the sample and tests its thermal properties. Azo two isobutylazoline hydrochloride (AIBI) / potassium persulfate (KPS) constitutes a piecewise composite initiating system. The optimum polymerization conditions and the influence of various factors on the properties of the polymer are investigated by orthogonal test. The concentration of the monomer is 20%, the initiator concentration is 0.05%, and the KPS:AIBI is 1:2. When the temperature is 30, the mass ratio of polymerization monomer AM:AMPS is 1:1 and the polymerization system pH is 8, the apparent viscosity of 500 mg/L P (AM/AMPS) aqueous solution at 25 C can reach 110 mPa. S. beta two methylamino propanonitrile (DMAPN) /KPS to form amine oxidation and prototype compound initiating system, the monomer concentration is 20 to 25wt%, and the mass ratio AM:AMPS of polymerization monomer is equal. The initiator concentration is 0.015% of the monomer concentration, KPS:DMAPN=1.05:1 (mole ratio), the initiating temperature 42 C, the polymerization time of 6h, and the pH value of the polymerization system at 9, the polymers obtained have high apparent viscosity and strong anti Ca~ (2+), Mg~ (2+).500mg/L, the apparent viscosity of the polymer aqueous solution at 25 C is 96.20mPa s, 1500mg/L. The apparent viscosity of the polymer Ca~ (2+), Mg~ (2+) (brine concentration 200 mg/L) salt solution is 36.54 mPa. S, 35.61 mPa. S.N, N, N', and N'- four methyl hexane diamine is composed of 20~25 monomer concentration, 0.003% (mole ratio) and 8~9 polymerization system. When the monomer mass ratio AM:AMPS is 1:1, when the temperature is 50 C and the initiation time is 3 h, the viscosity and salt resistance of the obtained polymers are all high. In the 32868 mg/L mineralized water, the apparent viscosity of the 1500 mg/L polymer solution at 25 and 85 centigrade at 7.34 s~ (-1) shear rate is divided into 30.09 mPa. S and 18.16mPa.s. three stage temperature controlled KPS/AIBI/D. MAPMA multifunction composite initiating system, 1500 mg/L copolymer in the 32868 mg/L mineralized water, at 85 C, the shear rate is 7.34 s~ (-1), the apparent viscosity is 18.69 mPa. S. results show that the copolymer of AMPS and AM has good anti temperature salt resistance, and the use of the composite system helps to improve the performance of the polymer.2. adding third monomer C. ACMO, AM/AMPS/ACMO three element copolymer was prepared by a free radical water solution polymerization system. The effect of initiator concentration, initiator ratio, monomer concentration, monomer ratio, initiator temperature, pH value of polymerization system, ACMO addition and so on on apparent viscosity of polymer was studied, and the solid content and degree of hydrolysis of polymer were measured, and the content and degree of hydrolysis of polymer were determined, and the content of polymer and the degree of hydrolysis were determined. The structure of the polymer was determined by nuclear magnetic resonance, infrared spectrum and elemental analysis. The thermal properties of the polymer.N- (3- two methylamino) methyl acrylamide (DMAPMA) /KPS composed of an amine based functional compound initiating system were studied. The molecular weight of the polymer was raised by the double action of DMAPMA initiation and polymerization. The concentration of the initiator was 0.0010% to 0.001. 5%, the concentration of the monomer is 20wt%, the initiating temperature is 42, the polymerization time is 4h, the ACMO is 5 to 10wt%, the pH value of the polymerization system is 9, the viscosity and salt resistance of the polymer are all high. The apparent viscosity of the polymer solution of 1500 mg/L in the 32868 mg/L mineralized water is 28.59 mPa s and 16.72 respectively at 25 and 85 C (-1) shear rate. MPa. S.DMAPN/KPS consists of amine oxidizing and prototyping compound initiating system, which leads to stable initiation and high efficiency, initiator concentration is 0.005%, monomer concentration is 25 wt%, temperature is 46~50 C, polymerization time is 6 h, ACMO is 1% (mole ratio). When the pH value of polymerization system is 9, it can increase the temperature and salt tolerance of polymer. In 32868 mg/L mineralized water, 1 The apparent viscosity of the polymer solution at 500 mg/L at 25 and 85 C at 7.34 s~ (-1) shear rate is 29.99 mPa-s and 16.63 mPa. S., respectively. The addition of third monomer ACMO and the use of the composite initiating system can be used to synthesize the temperature and salt resistant polymer P (AM/AMPS/ACMO).3. with high apparent viscosity. O) property of solution, the amount of polymer and the correlation between the amount of NaCl, CaCl2, MgCl2 and apparent viscosity of the solution; frequency, temperature, the correlation between the viscoelasticity of the inorganic salt and the polymer solution; the shear and temperature resistance of the polymer solution; the anti aging properties of the polymer solution,.P (AM/AMPS) and the P (AM/AMPS/ACMO) solution in shear resistance, temperature resistance and salt resistance And anti aging properties have excellent performance.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ317;TE39
【相似文獻】
相關(guān)期刊論文 前10條
1 延衛(wèi),李晨曦,印壽根,侯信,黃文強,何炳林;光折變聚合物材料研究進展[J];功能高分子學(xué)報;1997年03期
2 李勝方;張虹;徐蕊;馮江濤;晏石林;余劍英;;前端聚合在聚合物材料中的研究進展[J];化工新型材料;2011年07期
3 張慧麟;;聚合物合金技術(shù)的最新進展[J];化工新型材料;1993年10期
4 張秀彩,鐘偉,孟晟,程為莊,杜強國;磷脂聚合物的研究進展[J];高分子通報;2004年01期
5 何凌云,張玉清,文九巴;聚合物/層狀硅酸鹽納米復(fù)合材料制備方法及性能的研究進展[J];洛陽工學(xué)院學(xué)報;2001年03期
6 鐘發(fā)春;賀江平;王曉川;趙小東;;聚合物材料的微波制備技術(shù)[J];熱固性樹脂;2006年03期
7 王孝虹;王崢;;聚合物—無機納米復(fù)合材料的制備方法[J];廣州化工;2010年01期
8 韓海軍,梁淑君;聚合物/無機納米復(fù)合材料的研究現(xiàn)狀[J];科技情報開發(fā)與經(jīng)濟;2005年07期
9 ;非水分散聚合物[J];涂料工業(yè);1975年06期
10 李春生,周春暉,李慶偉,葛忠華,李小年;聚合物/蒙脫土納米復(fù)合材料的研究進展[J];化工生產(chǎn)與技術(shù);2002年04期
相關(guān)會議論文 前2條
1 陳蘇;;前端聚合法快速制備聚合物材料方法學(xué)的研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年
2 楊瑞成;陳奎;馮輝霞;羊海棠;;聚合物/蒙脫土納米復(fù)合材料的特征與進展[A];納米材料和技術(shù)應(yīng)用進展——全國第三屆納米材料和技術(shù)應(yīng)用會議論文集(下卷)[C];2003年
相關(guān)重要報紙文章 前1條
1 本報記者 鄭璐;聚合物:搖籃到墳?zāi)谷躺鷳B(tài)化[N];中國化工報;2012年
相關(guān)博士學(xué)位論文 前4條
1 解曉華;某些聚合物光電材料的理論計算[D];西南大學(xué);2012年
2 劉樂平;磷酸基地質(zhì)聚合物的反應(yīng)機理與應(yīng)用研究[D];廣西大學(xué);2012年
3 孫明波;聚合物/粘土/堿金屬離子插層復(fù)合物結(jié)構(gòu)與性能研究[D];山東大學(xué);2005年
4 邱桂花;超聲輻照制備具有電磁功能的聚合物/無機納米復(fù)合材料[D];四川大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 嚴文瀚;聚合物水動力尺寸及注入界限研究[D];中國科學(xué)院研究生院(滲流流體力學(xué)研究所);2015年
2 邢書銀;利用粉煤灰制備地質(zhì)聚合物的實驗研究[D];青海大學(xué);2016年
3 劉夢怡;失效磷酸基拋光液制備地質(zhì)聚合物的合成、結(jié)構(gòu)和性能表征[D];廣西大學(xué);2014年
4 王笑顏;共軛微孔聚合物的可控合成及其相關(guān)性能的研究[D];陜西師范大學(xué);2016年
5 閔敬麗;聚丙烯酰胺類耐溫抗鹽聚合物的合成及其性能研究[D];山東大學(xué);2017年
6 陽慶元;聚合物導(dǎo)熱系數(shù)的模型化研究[D];北京化工大學(xué);2001年
7 樓思斌;水溶性炔丙酰胺聚合物的設(shè)計、合成與表征[D];北京化工大學(xué);2009年
8 徐夏夢;部分聚合物定量結(jié)構(gòu)—性質(zhì)關(guān)系研究[D];陜西科技大學(xué);2013年
9 牛小龍;新型稠環(huán)聚合物和藍光聚合物的合成及其光電性能研究[D];華南理工大學(xué);2014年
10 佘希林;熔融擠出法制備聚合物/蒙脫土納米復(fù)合材料的研究[D];青島大學(xué);2002年
,本文編號:1969218
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1969218.html