B21井區(qū)優(yōu)勢(shì)通道判別及對(duì)策研究
本文選題:注水開(kāi)發(fā) + 含水率高; 參考:《西南石油大學(xué)》2015年碩士論文
【摘要】:經(jīng)過(guò)十幾年到幾十年的注水開(kāi)發(fā),目前大多數(shù)油田總體上都已進(jìn)入高含水高采出程度階段。在長(zhǎng)期注水開(kāi)發(fā)過(guò)程中,受儲(chǔ)層非均質(zhì)性、水油流度比及注采不平衡等因素的影響,注水開(kāi)發(fā)油田儲(chǔ)層中極易形成大孔道。在大孔道發(fā)育的地層中,注入水優(yōu)先沿大孔道流動(dòng),驅(qū)油效率低甚至起不到驅(qū)油的作用而直接從油井中生產(chǎn)出來(lái),造成注入水竄流和油井的過(guò)早水淹,而其它一些低滲部位很難受效,嚴(yán)重影響驅(qū)油效率,致使平面上剩余油飽和度差異明顯。 因此,砂巖油藏大孔道對(duì)儲(chǔ)層滲透率及注采工藝有著重要的影響,嚴(yán)重影響了注水開(kāi)發(fā)效果。因此發(fā)現(xiàn)和識(shí)別儲(chǔ)層中的水流優(yōu)勢(shì)通道,并采取相應(yīng)措施,對(duì)于改善注水開(kāi)發(fā)效果,提高原油采收率具有重要的意義。 本文針對(duì)B21井區(qū)百口泉組油藏注水開(kāi)發(fā)過(guò)程中出現(xiàn)的一些矛盾,如儲(chǔ)層非均質(zhì)性較強(qiáng)、水竄嚴(yán)重等,在廣泛調(diào)研大量國(guó)內(nèi)外文獻(xiàn)的基礎(chǔ)上,綜合前人的研究成果,通過(guò)深化地質(zhì)認(rèn)識(shí),結(jié)合生產(chǎn)動(dòng)態(tài)資料,對(duì)B21井區(qū)B1層系的優(yōu)勢(shì)通道的成因、識(shí)別及相應(yīng)對(duì)策進(jìn)行了研究,獲得了以下成果: 1、百口泉組高含水區(qū)近年由于注水井井況變差,分注率、分注級(jí)別低,導(dǎo)致平面、剖面壓力分布不均,潛力層動(dòng)用程度降低,含水上升加快,遞減加大,開(kāi)發(fā)效果變差。 2、優(yōu)勢(shì)通道形成機(jī)理的核心是儲(chǔ)層原始高孔、高滲透層段在高壓水流沖刷、驅(qū)動(dòng)力作用下,使儲(chǔ)層巖石顆粒表面吸附的粘土礦物及粒間填隙物或膠結(jié)物發(fā)生溶蝕、剝離、攜帶、遷移的過(guò)程,并使粒間孔喉壁表變光滑、孔道擴(kuò)大變粗,最終形成更高的孔、滲分布帶。 3、結(jié)合優(yōu)勢(shì)通道在實(shí)際油藏開(kāi)采中的表現(xiàn),分析其形成機(jī)理、成因類型。影響優(yōu)勢(shì)通道形成的因素包括儲(chǔ)層微觀結(jié)構(gòu)、儲(chǔ)層物性、沉積相、油藏非均質(zhì)性和開(kāi)采方式等因素。優(yōu)勢(shì)通道形成的類別有:沉積微相控制、微裂縫網(wǎng)絡(luò)連通、巖性沉積界面、儲(chǔ)層改造、長(zhǎng)期注水微顆粒遷移。 4、提出采用非均質(zhì)綜合指數(shù)、孔隙半徑、沉積韻律和產(chǎn)(吸)液強(qiáng)度分析優(yōu)勢(shì)通道的方法,對(duì)百口泉組油藏水驅(qū)優(yōu)勢(shì)通道進(jìn)行分析。先通過(guò)生產(chǎn)狀況和產(chǎn)吸液剖面初步評(píng)判優(yōu)勢(shì)通道的發(fā)育情況,再通過(guò)沉積韻律、非均質(zhì)綜合指數(shù)和孔隙半徑明確優(yōu)勢(shì)通道的發(fā)育等級(jí),最后利用示蹤劑監(jiān)測(cè)和試井資料驗(yàn)證發(fā)育等級(jí)的準(zhǔn)確性。B1層系優(yōu)勢(shì)通道主要集中在B12和B13砂組,其中1020A井組優(yōu)勢(shì)通道發(fā)育較好。 5、提出1020A井和1133井的調(diào)剖思路,并制定施工方案,進(jìn)行了現(xiàn)場(chǎng)施工,措施后日產(chǎn)油增加了15.t/d,含水率下降6.4個(gè)百分點(diǎn),兩井組累計(jì)增油3116.1t從而驗(yàn)證識(shí)別結(jié)果的準(zhǔn)確性。
[Abstract]:After more than ten years of water injection development, most oilfields have generally entered the stage of high water cut and high recovery. In the process of long-term water injection development, it is easy to form large pore channels in waterflooding oilfield reservoir due to the factors such as reservoir heterogeneity, water / oil mobility ratio and injection-production imbalance. In the formation with large pore development, injection water flows first along the large pore channel, and the oil displacement efficiency is low or even unable to play the role of oil displacement and is produced directly from the oil well, resulting in injection water channeling and premature flooding of the oil well. Some other low permeability parts are very uncomfortable, which seriously affect the oil displacement efficiency, resulting in significant difference in the remaining oil saturation on the plane. Therefore, the large pore passage of sandstone reservoir has an important influence on reservoir permeability and injection-production technology, which seriously affects the water injection development effect. Therefore, it is of great significance to find and identify the dominant channel of water flow in the reservoir and take corresponding measures to improve the effect of water injection development and oil recovery. In view of some contradictions in water injection development of Baikouquan formation reservoir in B21 well area, such as strong heterogeneity of reservoir, serious water channeling and so on, based on extensive investigation of a large number of domestic and foreign literature, this paper synthesizes the previous research results. By deepening geological understanding and combining with production dynamic data, the causes, identification and corresponding countermeasures of the dominant channel of B1 system in B21 well area are studied, and the following results are obtained: 1. In the high water-cut area of Baikouquan formation, due to the poor well condition, low injection rate and grade of injection in recent years, the plane and profile pressure distribution is uneven, the production degree of potential layer is decreased, the water cut rise is accelerated, the decline is increased, and the development effect becomes worse. 2. The core of the formation mechanism of the dominant channel is the original high porosity of the reservoir, the high permeability layer is washed by the high pressure water flow, and under the action of the driving force, the clay minerals adsorbed on the surface of the reservoir rock particles and the intergranular interstitial or cemented matter are dissolved, stripped off and carried. In the process of migration, the surface of the throat wall of the intergranular pore becomes smooth, the pore channel is enlarged and thickened, and finally a higher pore and permeability distribution zone is formed. 3. Combined with the performance of dominant channel in actual reservoir production, the formation mechanism and genetic type are analyzed. The factors affecting the formation of dominant channels include the microstructure of reservoir, reservoir physical properties, sedimentary facies, reservoir heterogeneity and exploitation methods. The types of dominant channels are: sedimentary microfacies control, microfracture network connectivity, lithologic sedimentary interface, reservoir transformation, long-term water injection microparticle migration. 4. The method of heterogeneity comprehensive index, pore radius, sedimentary rhythm and liquid intensity analysis is put forward to analyze the dominant channel of water drive in Baikouquan formation reservoir. First, the development of dominant channels is judged by production status and liquid absorption profile, and then the development grade of dominant channels is determined by sedimentation rhythm, heterogeneity comprehensive index and pore radius. Finally, the tracer monitoring and well testing data are used to verify the accuracy of the development grade. The dominant channel of the B1 series is mainly concentrated in the B12 and B13 sand groups, and the dominant channel of the 1020A well group is well developed. 5. The idea of profile control for well 1020A and well 1133 is put forward, and the construction scheme is worked out. The daily oil production is increased by 15.t / d, the water cut is decreased by 6.4 percentage points, and the accuracy of the recognition result is verified by the cumulative increase of 3116.1t in the two well groups.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE357.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張靜;楊歡;;試井解釋地層大孔道技術(shù)研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2010年03期
2 王祥,夏竹君,張宏偉,劉星普,李喜清,張?zhí)m江;利用注水剖面測(cè)井資料識(shí)別大孔道的方法研究[J];測(cè)井技術(shù);2002年02期
3 尹慶文,潘淑琴,董福印;大孔道地層注水剖面測(cè)井技術(shù)[J];測(cè)井技術(shù);1999年02期
4 裘亦楠;中國(guó)陸相碎屑巖儲(chǔ)層沉積學(xué)的進(jìn)展[J];沉積學(xué)報(bào);1992年03期
5 趙永強(qiáng),王秀鵬,史田,于秋玉,韓紅霞,程同軍;放射性同位素示蹤劑技術(shù)研究油水井間高滲透層[J];斷塊油氣田;2002年02期
6 徐保慶,伍泰榮,田樹(shù)全;自然伽馬測(cè)井在油田開(kāi)發(fā)中的應(yīng)用[J];斷塊油氣田;2002年05期
7 朱東亞,胡文tD,曹學(xué)偉,陳慶春;臨南油田隔層類型劃分及其分布規(guī)律研究[J];地球科學(xué);2004年02期
8 商志英,萬(wàn)新德,何長(zhǎng)虹,公衍富,焦艷麗,夏青;應(yīng)用水力探測(cè)方法確定儲(chǔ)層大孔道及剩余油分布狀況的研究——北2-20-P60井組典型實(shí)例解剖[J];大慶石油地質(zhì)與開(kāi)發(fā);2004年02期
9 張金成;電位法井間監(jiān)測(cè)技術(shù)[J];地震地質(zhì);2001年02期
10 雷有為,劉壽平,姚京坤,樊季梅,孫錦富,李莉;五參數(shù)注入剖面組合測(cè)井資料解釋[J];江漢石油學(xué)院學(xué)報(bào);2003年01期
,本文編號(hào):1932605
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1932605.html