沁南鄭莊區(qū)塊煤層氣空氣鉆井井壁穩(wěn)定性研究及工藝技術(shù)設(shè)計
本文選題:煤層氣 + 空氣鉆井 ; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:沁水盆地南部鄭莊區(qū)塊地質(zhì)構(gòu)造簡單、地層含水性弱、煤儲層壓力處于正常到稍微欠壓狀態(tài),煤層氣地質(zhì)特征適合使用空氣鉆井。本文在詳細分析研究區(qū)地質(zhì)資料、試井資料和巖心參數(shù)等數(shù)據(jù)的基礎(chǔ)上,結(jié)合空氣鉆井井壁穩(wěn)定性理論,對研究區(qū)煤層氣空氣鉆井井壁穩(wěn)定性進行研究,并提出空氣鉆井過程中防止地層出水的技術(shù)措施,設(shè)計出有利于研究區(qū)井壁穩(wěn)定性的空氣鉆井工藝參數(shù)、井身結(jié)構(gòu)、鉆井方式等。井壁圍巖的穩(wěn)定性主要由地層最大、最小水平主應(yīng)力的差值以及巖石本身的力學(xué)參數(shù)決定。根據(jù)空氣鉆井井壁穩(wěn)定性理論模型計算出研究區(qū)地層井壁穩(wěn)定性的內(nèi)聚力臨界值,并與圍巖本身內(nèi)聚力值進行對比,得出在空氣鉆井過程中煤層段井壁會發(fā)生剪切破壞,上部砂巖段井壁可以保持穩(wěn)定,通過計算得出保持煤層段井壁穩(wěn)定的最小鉆井液密度為0.55~0.57g/cm~3。研究區(qū)泥頁巖整體堅硬,分散性弱,表面裂隙發(fā)育,與地層水接觸會發(fā)生水化反應(yīng),水化膨脹率為13%左右,水化后巖石的彈性模量變小,泊松比增大,內(nèi)聚力和內(nèi)摩擦角降低,水化后泥頁巖易于破碎。水化后徑向應(yīng)力降低,切向應(yīng)力先增大后減小,并在井壁內(nèi)部達到最大值,且最大值大于未水化時井壁切向應(yīng)力值,會導(dǎo)致井壁發(fā)生坍塌破壞,不利于井壁的穩(wěn)定性。利用FLAC~(3D)軟件進行模擬分析,結(jié)果顯示流固耦合時井壁的變形量要大于非流固耦合時;流固耦合時圍巖應(yīng)力值明顯增大,并且會在最小應(yīng)力方向發(fā)生應(yīng)力集中,導(dǎo)致在最小應(yīng)力方向井壁易發(fā)生坍塌破壞,不利于井壁的穩(wěn)定性。利用巖屑沉降末速度理論,計算得出空氣流量為30~70m~3/min,機械鉆速在8m/h左右時井底產(chǎn)生的巖屑能夠被完全的攜帶出井口。根據(jù)研究區(qū)地層特征以及鉆井設(shè)備的工作特性,泵壓值為1.4~2.0MPa,鉆壓為15~30k N,鉆進軟地層時轉(zhuǎn)速在30~45r/min,鉆進中硬地層時轉(zhuǎn)速在25~40r/min時能夠保持空氣鉆井安全鉆進。當?shù)貙映鏊啃r,選擇全井段欠平衡鉆進;當?shù)貙映鏊枯^大時,采用常規(guī)水基泥漿鉆井與空氣鉆井相結(jié)合的鉆進方式。
[Abstract]:The geological structure of Zhengzhuang block in the south of Qinshui Basin is simple, the formation water content is weak, the pressure of coal reservoir is in a normal to slightly underpressure state, and the geological characteristics of coalbed methane are suitable for air drilling. Based on the detailed analysis of geological data, well test data and core parameters in the study area, combined with the theory of air drilling sidewall stability, this paper studies the stability of coal bed methane air drilling sidewall in the study area. The technical measures to prevent formation effluent during air drilling are put forward, and air drilling parameters, wellbore structure and drilling methods are designed which are beneficial to the stability of borehole lining in the study area. The stability of wall rock is mainly determined by the difference between the maximum and minimum horizontal principal stresses and the mechanical parameters of the rock itself. According to the theoretical model of air drilling wellbore stability, the cohesion critical value of formation wall stability is calculated, and compared with the cohesion value of surrounding rock itself, it is concluded that shear failure will occur in coal seam section during air drilling. The borehole lining of the upper sandstone section can be kept stable, and the minimum drilling fluid density is 0.55 ~ 0.57 g / cm ~ (3). In the study area, the shale is hard, weak in dispersion, and the surface fissures are developed. The hydration reaction will take place in contact with formation water. The hydration expansion rate is about 13%. After hydration, the elastic modulus of the rock becomes smaller, the Poisson's ratio increases, and the cohesion and friction angle decrease. Shale is easily broken after hydration. After hydration, the radial stress decreases, the tangential stress increases first, then decreases, and reaches the maximum value inside the shaft wall, and the maximum value is larger than the value of the wall tangential stress when the hydration is not hydrated, which will lead to the collapse of the shaft wall, which is not conducive to the stability of the shaft wall. The simulation analysis with FLACX / 3D software shows that the deformation of shaft wall is larger than that of non-fluid-solid coupling, and the stress value of surrounding rock increases obviously in fluid-solid coupling, and the stress concentration occurs in the direction of minimum stress. In the direction of minimum stress, the shaft wall is liable to collapse and destroy, which is not conducive to the stability of the shaft wall. Based on the theory of cuttings' terminal velocity, it is calculated that the air flow rate is 30 ~ 70mg / min, and the cuttings produced at the bottom of the well can be completely carried out from the wellhead when the mechanical drilling speed is about 8m/h. According to the formation characteristics of the studied area and the working characteristics of drilling equipment, the pump pressure value is 1.4 ~ 2.0 MPa, the drilling pressure is 15 ~ 30kN, the rotational speed of drilling in soft formation is 30 ~ 45r / min, and the rotational speed of drilling in middle hard formation can keep air drilling safely at 25~40r/min. When the water output of the local formation is small, the under-balanced drilling in the whole well section is selected, and the conventional water-base mud drilling combined with air drilling is adopted when the water output of the local formation is large.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD842
【參考文獻】
相關(guān)期刊論文 前10條
1 劉嬌男;朱炎銘;劉宇;唐鑫;;海陸過渡相泥頁巖儲層特征研究——以沁水盆地為例[J];煤田地質(zhì)與勘探;2015年06期
2 鄧柯;;國內(nèi)氣體鉆井技術(shù)發(fā)展現(xiàn)狀與應(yīng)用前景淺析[J];鉆采工藝;2015年02期
3 常明;;流固耦合作用下氣體鉆井井壁穩(wěn)定性分析[J];西部探礦工程;2015年03期
4 賀曉強;姬永濤;郭文祥;康少偉;孫金澤;;空氣潛孔錘技術(shù)在韓城煤層氣井施工中的應(yīng)用[J];中國煤層氣;2014年05期
5 王怡;劉修善;曾義金;光新軍;;泥頁巖綜合分類方法探索[J];鉆井液與完井液;2014年04期
6 楊旭;孟英峰;李皋;徐力群;肖貴林;;溫度對氣層氣體鉆井井壁穩(wěn)定的影響[J];科學(xué)技術(shù)與工程;2014年19期
7 劉春寶;;氣體欠平衡鉆井井壁穩(wěn)定性研究[J];中國石油和化工標準與質(zhì)量;2014年12期
8 王帥;徐明磊;張旭;劉超;侯士東;;充氣欠平衡鉆井技術(shù)在煤層氣井的應(yīng)用[J];內(nèi)蒙古石油化工;2014年03期
9 周立春;李夢溪;王立龍;王剛;張聰;于家盛;;沁水盆地南部鄭莊區(qū)塊煤層氣鉆井井漏預(yù)防及處理[J];中國煤層氣;2013年06期
10 李玉光;崔應(yīng)中;王薦;鄭銘;向興金;;沁水盆地頁巖氣地層頁巖特征分析及鉆井液對策[J];石油天然氣學(xué)報;2013年12期
相關(guān)會議論文 前1條
1 唐勝利;陳粵強;;煤層氣空氣鉆井設(shè)備的選型及性能分析[A];高產(chǎn)高效煤礦建設(shè)的地質(zhì)保障技術(shù)——陜西省煤炭學(xué)會學(xué)術(shù)年會論文集·2009[C];2009年
相關(guān)碩士學(xué)位論文 前5條
1 霍戰(zhàn)波;沁南鄭莊區(qū)塊煤層氣直井氣水產(chǎn)能差異及主控因素分析[D];中國礦業(yè)大學(xué);2016年
2 覃園圓;泥頁巖水化對井壁穩(wěn)定性影響研究[D];西安石油大學(xué);2014年
3 林小琰;氣體鉆井地層出水預(yù)測與隨鉆識別方法研究[D];西南石油大學(xué);2014年
4 李克松;氣體欠平衡鉆井井壁穩(wěn)定性研究[D];東北石油大學(xué);2011年
5 楊決算;大慶油田氣體鉆井地層出水與井壁穩(wěn)定技術(shù)研究[D];東北石油大學(xué);2010年
,本文編號:1858720
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1858720.html