氣體垂向運移體系下天然氣水合物聲學(xué)特性模擬實驗研究
本文選題:天然氣水合物 + 飽和度 ; 參考:《中國地質(zhì)大學(xué)》2017年博士論文
【摘要】:天然氣水合物具備巨大的資源潛力,在世界范圍內(nèi)廣泛分布,在我國海域和陸上凍土帶中也逐漸發(fā)現(xiàn)了水合物。當(dāng)前,以地震波技術(shù)為主的地球物理勘探技術(shù)仍是海洋天然氣水合物勘探的主要手段。由于野外獲取的數(shù)據(jù)難以在水合物飽和度和聲速之間建立關(guān)系,因此人們通常用實驗的方法將水合物飽和度和聲速之間建立相應(yīng)的關(guān)系并進行速度模型驗證。在合適的模型基礎(chǔ)上希望利用獲取的地震波參數(shù)和聲波測井?dāng)?shù)據(jù)對儲層資源量進行估算與評價。已有研究大多在封閉體系下對天然氣水合物生成分解過程中聲學(xué)響應(yīng)特征進行研究,對更接近水合物實際成藏過程的氣體運移條件下聲學(xué)響應(yīng)特征了解甚少。因此,采用實驗?zāi)M的方法研究氣體垂向運移體系中水合物儲層的聲學(xué)特性,將對水合物地球物理勘探和資源評價具有重要意義。本文通過模擬氣體垂向運移條件下水合物在沉積物中生成和分解過程,利用超聲探測技術(shù)和時域反射技術(shù)(TDR),實時探測水合物的聲速和飽和度變化,確定不同甲烷通量對水合物飽和度、聲學(xué)響應(yīng)特征的影響。通過上述模擬實驗獲取動態(tài)體系中聲速隨水合物飽和度的變化規(guī)律,驗證速度模型在各種條件下的適應(yīng)情況。在此基礎(chǔ)上,同封閉體系下水合物形成過程中聲學(xué)特性進行對比,揭示不同體系下含水合物沉積物的聲學(xué)響應(yīng)特征差異,根據(jù)理論模型和聲學(xué)數(shù)據(jù)探討水合物生成模式。通過相應(yīng)的研究,一方面在技術(shù)方面取得創(chuàng)新,另一方面在不同體系下水合物的聲學(xué)響應(yīng)、速度模型的選取和水合物微觀分布方面取得了新的認(rèn)識,也為更加逼真模擬水合物的形成和真實理解水合物成藏過程提供了重要實驗依據(jù)。在實驗技術(shù)方面,采用數(shù)字示波器優(yōu)化和改進了實驗技術(shù)的數(shù)據(jù)采集系統(tǒng),將數(shù)字示波器替代A/D數(shù)據(jù)采集卡應(yīng)用到超聲數(shù)據(jù)采集系統(tǒng),相比數(shù)據(jù)采集卡數(shù)字示波器具有同等的數(shù)據(jù)存儲和采集功能,并且在實驗過程中能對待測波形進行直觀觀測,應(yīng)用取得良好的效果。在實驗裝置中實現(xiàn)氣體垂向運移體系,使用壓差控制系統(tǒng)為氣體的流動提供驅(qū)動力,為防止沉積物中水分的散失和氣體運移通道的堵塞,將微孔燒結(jié)板、防水透氣砂和下氣室加熱底板應(yīng)用到實驗體系,保證實驗過程的順利進行。將BROOKS質(zhì)量流量控制器應(yīng)用到實驗體系,實現(xiàn)對反應(yīng)體系的氣體流量控制。系統(tǒng)地獲得了氣體垂向運移體系中水合物生成和分解實驗的聲學(xué)和飽和度數(shù)據(jù),建立了氣體垂向運移體系下聲學(xué)和水合物飽和度的關(guān)系。對氣體垂向運移體系下水合物聲學(xué)特性研究表明水合物生成過程中的縱橫波速度大于分解過程中的縱橫波速度。在氣體垂向運移體系下,當(dāng)水合物飽和度在0-20%時,發(fā)現(xiàn)聲速有一個小幅度的快速增加。當(dāng)水合物飽和度在20%-60%時,聲速的增加幅度變慢。當(dāng)水合物飽和度大于60%時,聲速的增加再次變快。發(fā)現(xiàn)含水合物沉積物聲速隨水合物飽和度的增加呈現(xiàn)出快速-慢速-快速增加的變化趨勢。在此基礎(chǔ)上,對進氣端甲烷通量進行控制,探索了不同甲烷通量的水合物生成模擬實驗。通過實驗獲取了不同甲烷通量對水合物生成速率及水合物生成量的影響:即甲烷供應(yīng)通量越小,生成最大水合物飽和度所需時間越少;甲烷通量越大,生成最大水合物飽和度用時越長。在一定時間內(nèi),甲烷通量越大,越易形成高飽和度水合物。甲烷通量供應(yīng)模式下聲速同氣體垂向運移體系下聲速變化呈現(xiàn)出相似趨勢,在水合物生成初期,聲速有相對較快的增長;之后在水合物生成階段,聲速呈現(xiàn)出較為平緩的增長趨勢;在水合物飽和度50%-60%左右,聲速的增加速率明顯變快。為了進行動態(tài)、靜態(tài)體系水合物形成差異性對比,在二維實驗裝置中進行封閉體系模擬實驗,并得到水合物生成過程中空間分布的初步認(rèn)識:即水合物生成初期,水合物優(yōu)先在粗粒沉積物中生成;水合物生成末期,粗粒和細粒對沉積物飽和度及聲速影響不大。在沉積物中縱向上離氣源越近,越易生成水合物,隨著時間推移各層水合物飽和度逐漸趨于一致;在橫向上水合物優(yōu)先在反應(yīng)釜周邊生成,隨后在反應(yīng)釜內(nèi)部生成。實驗獲得Vp-Vs間的經(jīng)驗公式,與野外同類型儲層實地數(shù)據(jù)具有良好對比性,可為儲層縱橫波速度和水合物飽和度估算提供依據(jù)。將封閉體系下和氣體運移體系下水合物聲學(xué)特性進行對比分析,得出在封閉體系中,聲速的增加較快,沒有明顯階段性變化。在氣體垂向運移體系下,聲速體現(xiàn)出快速-慢速-快速增加的趨勢。將南海北部陸坡實測聲速同水合物飽和度數(shù)據(jù)與實驗結(jié)果對比,結(jié)果表明氣體運移體系下聲速與水合物飽和度間關(guān)系同南海實測數(shù)據(jù)結(jié)果較為一致。在進行不同體系實驗的基礎(chǔ)上,將適應(yīng)于水合物飽和度預(yù)測的速度模型進行驗證。結(jié)果表明,在氣體垂向運移體系下,適應(yīng)的速度模型為權(quán)重方程、BGTL理論和等效介質(zhì)理論,權(quán)重方程的預(yù)測值同實測值有較好一致性。由于本實驗為松散沉積物體系,通過驗證得知權(quán)重方程并不適應(yīng)實測橫波速度值。當(dāng)水合物飽和度在20%-60%時,實驗結(jié)果同等效介質(zhì)理論模式A的計算結(jié)果相近。在甲烷通量供應(yīng)模式下,適應(yīng)的速度模型為BGTL理論和經(jīng)過調(diào)整的等效介質(zhì)理論。在權(quán)重方程中,權(quán)重方程預(yù)測的縱波速度值同實驗測試值有相近的趨勢,但計算值同實際值之間有一定差值。在等效介質(zhì)理論中,當(dāng)水合物飽和度為25%-55%時,實驗結(jié)果同等效介質(zhì)理論模式B計算結(jié)果相接近。當(dāng)水合物飽和度為60%-70%時,實驗測得結(jié)果同等效介質(zhì)理論模式A結(jié)果相一致。在水合物飽和度大于80%以后,實測值趨向于等效介質(zhì)理論模式C的計算值。BGTL理論和等效介質(zhì)理論對南海沉積物中水合物飽和度預(yù)測有一定適應(yīng)性。綜上可知,速度模型在各體系下具有不同的適應(yīng)性,由于水合物對沉積物聲學(xué)影響較復(fù)雜,單一參數(shù)選擇難以適應(yīng)不同條件。BGTL理論和等效介質(zhì)理論在各體系下具有較好的適應(yīng)性。在高甲烷通量體系下,氣體對沉積物聲速的影響需要考慮,經(jīng)過調(diào)整的等效介質(zhì)理論模型不僅能對水合物飽和度進行估算,還能對水合物微觀分布模式產(chǎn)生指導(dǎo)意義。改進和完善了水合物成藏的微觀理論模型,根據(jù)理論模型并結(jié)合CT實驗數(shù)據(jù)探討了水合物在不同體系下的微觀分布模式。在氣體垂向運移體系下,水合物生成初始階段,水合物優(yōu)先在顆粒接觸處和氣泡表面以膠結(jié)方式形成,沉積物顆粒通過水合物殼相互結(jié)合在一起。之后水合物主要在孔隙流體中生成。隨著水合物飽和度的增加,流體中的水合物同沉積物顆粒相互接觸在一起,水合物充填滿孔隙空間。在高甲烷通量滲漏體系下,水合物主要以顆粒接觸模式生成,之后水合物會在孔隙流體中生成。隨著水合物飽和度的增加,流體中的水合物同沉積物顆粒相互接觸在一起,水合物以膠結(jié)模式生成。
[Abstract]:Natural gas hydrate has great resource potential and is widely distributed worldwide, and hydrates have been found in the sea area and the continental permafrost zone. At present, the geophysical exploration technology based on seismic wave technology is still the main part of the exploration of marine gas hydrate. The relationship between degree and sound velocity is established, so people usually establish the relationship between hydrate saturation and sound velocity by experimental method and verify the velocity model. On the basis of suitable model, we hope to estimate and evaluate the source of reservoir by using the obtained seismic wave parameters and acoustic logging data. Most of the research has been done. In the closed system, the acoustic response characteristics of the gas hydrate formation and decomposition process are studied. The acoustic response characteristics of the gas migration under the actual gas hydrate formation process are little understood. Therefore, the experimental simulation method is used to study the acoustic characteristics of the hydrate reservoir in the gas vertical migration system, and the hydrate will be used to hydrate the gas hydrate reservoir. Geophysical exploration and resource evaluation are of great significance. In this paper, by simulating the formation and decomposition process of hydrates under the condition of vertical migration of gas, ultrasonic detection and time domain reflectometry (TDR) are used to detect the velocity and saturation of hydrate in real time, and determine the difference of methane flux to hydrate saturation and acoustic noise. The variation of sound velocity in the dynamic system with hydrate saturation is obtained by the above simulation experiments, and the adaptation of the velocity model under various conditions is verified. On this basis, the acoustic characteristics of hydrate formation under the closed system are compared to reveal the acoustic response of the hydrate deposits in different systems. On the basis of theoretical model and acoustic data, the hydrate formation model is discussed. On the one hand, innovation is made on the one hand, and on the other hand, the acoustic response of hydrates, the selection of velocity model and the micro distribution of hydrate in different systems are new, and the more realistic simulation of hydrates is also made. In the experimental technology, the digital oscilloscope is used to optimize and improve the data acquisition system of the experimental technology. The digital oscilloscope is applied to the ultrasonic data acquisition system instead of the A/D data acquisition card. Compared with the data acquisition card digital oscilloscope, the digital oscilloscope has the same data. The storage and acquisition function, and can be used to observe the measurement waveform in the experimental process, and achieve good results. In the experimental device, the vertical migration system of gas is realized and the pressure difference control system is used to provide the driving force for the flow of gas. In order to prevent the loss of water in the sediment and the blockage of the gas migration channel, the micropores are burned. The BROOKS mass flow controller is applied to the experimental system and the gas flow control of the reaction system is applied to the experimental system. The acoustic and saturation data of the hydrates generation and decomposition experiments in the gas vertical migration system are systematically obtained. The relationship between acoustics and hydrate saturation under the vertical migration system of gas is established. The study of the acoustic characteristics of hydrates under the vertical migration system shows that the velocity of the longitudinal and transverse waves in the process of hydrate formation is greater than that in the decomposition process. Under the vertical migration system of gas, when the hydrate saturation is at 0-20%, the velocity of sound is found. A small amplitude increases rapidly. When the hydrate saturation is at 20%-60%, the increase of sound velocity slows down. When the hydrate saturation is more than 60%, the increase of sound velocity becomes faster. It is found that the velocity of the hydrate content of the hydrates shows a fast slow fast increasing trend with the increase of hydrate saturation. On this basis, the intake end is on the intake end. The methane flux is controlled and the simulation experiment of hydrate formation with different methane flux is explored. The effects of different methane flux on hydrate formation rate and hydrate formation are obtained by experiments. The smaller the methane supply flux is, the less time it takes to generate the maximum hydrate saturation; the greater the methane flux is, the greater the formation of the maximum hydrate is full. In a certain time, the greater the methane flux, the higher the formation of high saturation hydrate. The sound velocity in the methane flux supply mode is similar to that under the vertical migration system, and the sound velocity increases relatively quickly at the early stage of hydrate formation, and the sound velocity appears relatively flat in the hydrate formation stage. The slow growth trend; the rate of sound velocity increased obviously at the hydrate saturation of 50%-60%. In order to make the dynamic, the static system hydrate formation difference contrast, the closed system simulation experiment in the two-dimensional experimental device, and the preliminary understanding of the space distribution in the process of hydrate formation, namely, the early formation of hydrate formation, hydration. At the end of hydrate formation, coarse particles and fine particles have little effect on the saturation and sound velocity of the sediments. The closer to the gas source in the sediments, the more easily the hydrate is generated, and the hydrate saturation gradually tends to be consistent with the time. The empirical formula between the Vp-Vs and the field data of the same type reservoir in the field is well contrasted, which can provide the basis for estimating the velocity of the longitudinal and transverse waves and the hydrate saturation of the reservoir. The acoustic characteristics of the hydrate under the closed system and the gas migration system are compared and analyzed, and the sound velocity in the closed system is obtained. In the vertical migration system, the sound velocity reflects the trend of rapid, slow and rapid increase. Compared with the experimental results, the measured velocity of sound and hydrate saturation in the northern slope of the South China Sea is compared with the experimental results. The results show that the relationship between sound velocity and hydrate saturation under the gas migration system is the same as the measured data of the South China Sea. The results are consistent. On the basis of different system experiments, the velocity model adapted to the prediction of hydrate saturation is verified. The results show that the velocity model adapted to the gas vertical migration system is the weight equation, the BGTL theory and the equivalent medium theory are in good agreement with the measured values. This experiment is a loose sediment system. Through verification, it is found that the weight equation does not adapt to the measured shear wave velocity. When the hydrate saturation is at 20%-60%, the experimental results are similar to that of the equivalent medium theoretical model A. Under the methane flux supply model, the adaptive velocity model is the BGTL theory and the adjusted equivalent medium theory. In the weight equation, the longitudinal wave velocity predicted by the weight equation has a similar trend with the experimental test value, but there is a certain difference between the calculated value and the actual value. In the equivalent medium theory, when the hydrate saturation is 25%-55%, the experimental results are close to the results of the equivalent medium theoretical model B calculation. When the hydrate saturation is 60%-70%, the actual result is true. The results of the test are in accordance with the A results of the equivalent medium theory model. After the hydrate saturation is more than 80%, the measured values tend to be the equivalent medium theory model C value.BGTL theory and the equivalent medium theory for the prediction of hydrate saturation in the sediments of the South China Sea. Because of the complex effect of hydrate on sediment acoustics, the single parameter selection is difficult to adapt to the different conditions and the.BGTL theory and the equivalent medium theory have good adaptability. Under the high methane flux system, the effect of gas on the sound velocity of sediment needs to be considered, and the adjusted equivalent medium theory model can not only be considered. The estimation of hydrate saturation can also provide guidance for the micro distribution pattern of hydrates. The micro theoretical model of hydrate formation is improved and perfected. According to the theoretical model and the experimental data of CT, the micro distribution pattern of hydrate under different systems is discussed. Under the vertical migration system of gas body, the initial order of hydrate formation is formed. The hydrate is formed in the form of cementation at the particle contact and the surface of the bubble, and the sediment particles are combined together through the hydrate shells. Then the hydrate is generated mainly in the pore fluid. As the hydrate saturation increases, the hydrate in the fluid is contacted with the sediment particles, and the hydrate fills the void void. In the high methane flux leakage system, hydrates are generated mainly in the particle contact mode, and then hydrate will be generated in the pore fluid. With the increase of hydrate saturation, the hydrate in the fluid is exposed to the sediment particles, and the hydrate is produced in the cementation model.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:P618.13
【相似文獻】
相關(guān)期刊論文 前10條
1 I.Lerche,E.Bagirov,席敏紅,黃志超;氣水合物在不同地質(zhì)環(huán)境中的穩(wěn)定性[J];海洋石油;2000年01期
2 胡高偉;業(yè)渝光;張劍;劉昌嶺;王家生;;水合物儲運技術(shù)新進展——記第6屆國際水合物大會[J];海洋地質(zhì)動態(tài);2008年11期
3 李文革;尹國君;劉文寶;王志超;陳強;;淺談水合物生成預(yù)測方法[J];鉆采工藝;2008年S1期
4 顏榮濤;韋昌富;傅鑫暉;鐘曉斌;肖桂元;;水合物賦存模式對含水合物土力學(xué)特性的影響[J];巖石力學(xué)與工程學(xué)報;2013年S2期
5 唐中華;張元澤;鐘水清;帥志芬;熊繼有;;天絲氣水合物勘探及H型水合物的儲藏特性研究[J];天然氣經(jīng)濟;2004年02期
6 陳多福,蘇正,馮東,Lawrence M.Cathles;海底天然氣滲漏系統(tǒng)水合物成藏過程及控制因素[J];熱帶海洋學(xué)報;2005年03期
7 黃犢子;樊栓獅;梁德青;馮自平;;水合物合成及導(dǎo)熱系數(shù)測定[J];地球物理學(xué)報;2005年05期
8 呂萬軍,I-Ming Chou,Robert C.Burruss,金慶煥,傅家謨;拉曼光譜原位觀測水合物形成后的飽和甲烷濃度[J];地球化學(xué);2005年02期
9 陳多福,馮東,Cathles L M;海底天然氣滲漏系統(tǒng)水合物成藏動力學(xué)及其資源評價方法[J];大地構(gòu)造與成礦學(xué);2005年02期
10 王文娟;陳建文;竇振亞;張劍;;海底微生物在水合物識別中的應(yīng)用[J];海洋地質(zhì)動態(tài);2006年12期
相關(guān)會議論文 前10條
1 魯曉兵;王麗;王淑云;趙京;王愛蘭;;四氫呋喃水合物沉積物力學(xué)性質(zhì)研究[A];第十三屆中國海洋(岸)工程學(xué)術(shù)討論會論文集[C];2007年
2 張樹林;陳多福;;白云凹陷水合物成藏條件研究及水合物的預(yù)測[A];中國地球物理學(xué)會第二十三屆年會論文集[C];2007年
3 關(guān)進安;梁德青;吳能友;萬麗華;李棟梁;;南海北部神狐區(qū)域海底沉積層工程地質(zhì)條件對水合物成藏影響[A];第九屆全國工程地質(zhì)大會論文集[C];2012年
4 呂萬軍;郭依群;莊新國;梁金強;沈銘;黃國成;;海底沉積物中水合物成礦機理與分布規(guī)律[A];海洋地質(zhì)、礦產(chǎn)資源與環(huán)境學(xué)術(shù)研討會論文摘要集[C];2006年
5 矯濱田;魯曉兵;;水合物開采后的地層穩(wěn)定性[A];2006年度海洋工程學(xué)術(shù)會議論文集[C];2006年
6 劉偉安;王均;楊秀夫;何玉發(fā);魏劍飛;黃小龍;趙維青;劉保波;;水合物安全處理推薦[A];第二十屆海峽兩岸及香港、澳門地區(qū)職業(yè)安全健康學(xué)術(shù)研討會暨中國職業(yè)安全健康協(xié)會2012學(xué)術(shù)年會論文集[C];2012年
7 孫志高;劉成剛;;環(huán)戊烷水合物生長過程實驗研究[A];走中國創(chuàng)造之路——2011中國制冷學(xué)會學(xué)術(shù)年會論文集[C];2011年
8 魏晶晶;謝應(yīng)明;劉道平;;水合物在蓄冷及制冷(熱泵)領(lǐng)域的應(yīng)用[A];中國制冷學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
9 閆柯樂;孫長宇;申得濟;尹海霞;陳光進;;聯(lián)用型水合物抑制劑研究[A];第七屆全國能源與熱工學(xué)術(shù)年會論文集[C];2013年
10 徐文新;陳多福;陳先沛;陳光謙;;天然氣組成對水合物形成的影響及災(zāi)害預(yù)防研究[A];2001年全國沉積學(xué)大會摘要論文集[C];2001年
相關(guān)重要報紙文章 前10條
1 春溪;氣水合物提取天然氣三種方法[N];中國石油報;2003年
2 毛彬;天然氣水合物開發(fā)的利與弊[N];中國海洋報;2004年
3 張衛(wèi)東;天然氣水合物:一朵帶刺的玫瑰[N];中國石化報;2005年
4 記者 安豐;國家應(yīng)加強天然氣水合物勘查[N];地質(zhì)勘查導(dǎo)報;2005年
5 記者胡創(chuàng)偉、張勇;臺灣西南海域發(fā)現(xiàn)“天然氣水合物”[N];人民日報海外版;2002年
6 記者 江書程;天然氣水合物將走進我們生活[N];中國石油報;2006年
7 張浩;俄研究天然氣水合物開采技術(shù)[N];科技日報;2008年
8 趙艷霞;青島所天然氣水合物實驗室擴建[N];地質(zhì)勘查導(dǎo)報;2009年
9 記者 張立;我國成功申辦第八屆國際天然氣水合物大會[N];中國礦業(yè)報;2011年
10 通訊員 楊惠晴 特約記者 曹雪晴;青島所建部天然氣水合物重點實驗室[N];中國國土資源報;2012年
相關(guān)博士學(xué)位論文 前10條
1 卜慶濤;氣體垂向運移體系下天然氣水合物聲學(xué)特性模擬實驗研究[D];中國地質(zhì)大學(xué);2017年
2 劉杰;陸域天然氣水合物地震響應(yīng)與特征分析研究[D];中國地質(zhì)大學(xué);2015年
3 王菲菲;二氧化碳置換甲烷水合物微觀實驗研究[D];中國地質(zhì)大學(xué);2015年
4 王吉亮;高富集度天然氣水合物儲層地球物理特征研究[D];中國科學(xué)院研究生院(海洋研究所);2015年
5 鄭明明;人造水合物巖心研制與實驗研究[D];中國地質(zhì)大學(xué);2016年
6 李冰;祁連山凍土區(qū)天然氣水合物試采數(shù)值模擬及置換開采實驗研究[D];吉林大學(xué);2016年
7 李連偉;基于面向?qū)ο蟮乃衔锞C合評價研究[D];中國石油大學(xué)(華東);2014年
8 胡高偉;南海沉積物的水合物聲學(xué)特性模擬實驗研究[D];中國地質(zhì)大學(xué);2010年
9 張劍;多孔介質(zhì)中水合物飽和度與聲波速度關(guān)系的實驗研究[D];中國海洋大學(xué);2008年
10 陳多福;海底天然氣滲漏系統(tǒng)水合物形成分解動力學(xué)及微生物作用[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2004年
相關(guān)碩士學(xué)位論文 前10條
1 康俊鵬;采氣管線水合物預(yù)測與抑制技術(shù)研究[D];西安石油大學(xué);2017年
2 胡騰;石英砂、銅絲網(wǎng)存在下四氫呋喃水合物生長過程研究[D];華南理工大學(xué);2015年
3 楊茜;聚乙烯己內(nèi)酰胺類水合物抑制劑開發(fā)及綜合評價[D];華南理工大學(xué);2015年
4 王靜;長距離輸氣管道的水合物生成預(yù)測[D];長江大學(xué);2015年
5 慕亞茹;基于灰色-RBF算法的瓦斯水合物相平衡預(yù)測研究[D];黑龍江科技大學(xué);2015年
6 張良;自冰粉生成水合物氣固反應(yīng)模型研究[D];大連理工大學(xué);2015年
7 汲崇明;冰粉生成甲烷水合物的影響因子研究[D];大連理工大學(xué);2015年
8 沈治濤;CH_4-CO_2水合物沉積物力學(xué)性質(zhì)研究[D];大連理工大學(xué);2015年
9 孫嘯;渤海油田某天然氣管網(wǎng)水合物預(yù)測與防治技術(shù)研究[D];西南石油大學(xué);2012年
10 鄭杰;火驅(qū)尾氣管網(wǎng)凍堵機理分析及防治對策研究[D];東北石油大學(xué);2015年
,本文編號:1805872
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1805872.html