常減壓蒸餾裝置中換熱網(wǎng)絡(luò)的模擬優(yōu)化研究
發(fā)布時間:2018-04-15 04:29
本文選題:常減壓蒸餾 + 換熱網(wǎng)絡(luò) ; 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:21世紀(jì),能源問題已成我國,甚至全世界所面臨的嚴(yán)峻挑戰(zhàn)。其中,作為不可再生的能源:煤、石油以及天然氣的貯備量愈加減少,消耗量卻在不斷增加。僅2014年一年,我國的原油消費量就高達(dá)五億多噸,然而總產(chǎn)量僅為耗量的五分之二左右。另外,由于我國長期以來粗放型的經(jīng)濟(jì)增長模式,使得整個石化行業(yè)的能耗量巨大。在原油的煉制過程中,常減壓蒸餾作為原油加工的第一道工藝,決定著原油加工品質(zhì)的高低,其裝置用能約占整個煉廠的四分之一。因此,常減壓蒸餾裝置的工藝水平對與企業(yè)的節(jié)能降耗、經(jīng)濟(jì)效益的增長有重要意義。目前,我國的煉化工業(yè)越來越注重裝置的基礎(chǔ)設(shè)計與優(yōu)化改造。針對這一現(xiàn)狀,本文擬使用Aspen plus模擬軟件對常減壓蒸餾裝置的工藝流程進(jìn)行模擬并對其換熱網(wǎng)絡(luò)加以優(yōu)化設(shè)計,以此來實現(xiàn)化工過程全局用能優(yōu)化。本次課題以惠州煉化常減壓裝置為研究對象。作為世界上第一座集中加工高含酸重質(zhì)海洋油的煉廠,惠州煉化具備許多石化企業(yè)所沒有的裝置特點與工藝特點。另外,該煉廠的原油加工量為1200萬噸/年,巨大的加工量使得實際生產(chǎn)中的常減壓裝置操作設(shè)備繁多,連接復(fù)雜。在建模前期,通過繪制其工藝原則圖對實際流程進(jìn)行適當(dāng)?shù)囊?guī)劃與調(diào)整,增加模擬計算的準(zhǔn)確性。在模擬過程中,利用Aspen plus模擬軟件根據(jù)原油性質(zhì)、設(shè)計規(guī)定進(jìn)行模擬參數(shù)的設(shè)定以選用適當(dāng)?shù)奈镄苑椒˙K10,收斂算法WEGSTEIN,建立常減壓蒸餾裝置的操作模型。分別輸入相應(yīng)的工藝參數(shù),對整個常減壓工藝流程進(jìn)行模擬。隨后,提取出參與換熱過程的工藝流股和公用工程流股的溫度、流量、熱量等操作數(shù)據(jù),利用Aspen pinch模塊對其換熱網(wǎng)絡(luò)進(jìn)行模擬。確定系統(tǒng)的夾點溫度,熱回收量以及公用工程耗量。另外,為了驗證所取夾點溫差的正確性,取△Tmin為多個溫度值,分別計算換熱網(wǎng)絡(luò)在該傳熱溫差下的夾點溫度以及公用工程耗量。繪制換熱網(wǎng)絡(luò)的柵格圖,通過夾點計算可得實際換熱終溫與理論值有一定差距,從而該換熱網(wǎng)絡(luò)具有一定的改造潛力。根據(jù)夾點技術(shù)對換熱系統(tǒng)的優(yōu)化理論,提出改造方案:將換熱網(wǎng)絡(luò)分為脫前原油、脫后原油以及閃底油三個換熱段,對其中違反夾點理論、存在改造潛力的流程段重新規(guī)劃設(shè)計,確立新的換熱流程。計算得改造后換熱網(wǎng)絡(luò)的換熱終溫得以提高,且裝置的燃料氣用量減少,系統(tǒng)的能量回收率提高。從而,改造具有一定效果,并可對實際操作產(chǎn)生指導(dǎo)作用。
[Abstract]:In the 21 st century, energy problem has become a severe challenge to our country, even the whole world.As a non-renewable energy source, coal, oil and natural gas reserves are dwindling and consumption is increasing.In 2014 alone, China's crude oil consumption reached more than 500 million tons, but the total output was only about 2/5 of the consumption.In addition, the energy consumption of the whole petrochemical industry is huge because of the extensive economic growth model in China.In the process of crude oil refining, atmospheric and vacuum distillation, as the first process of crude oil processing, determines the quality of crude oil processing, and its unit energy accounts for about 1/4 of the whole refinery.Therefore, the process level of atmospheric and vacuum distillation unit is of great significance to the energy saving and economic benefit increase of enterprises.At present, China's refining and chemical industry is paying more and more attention to the basic design and optimization of the plant.In view of this situation, this paper uses Aspen plus simulation software to simulate the process flow of atmospheric and vacuum distillation unit and optimize the design of heat transfer network, so as to realize the optimization of global energy use of chemical process.This topic takes Huizhou Refining and Chemical Atmospheric and vacuum Unit as the research object.As the first refinery in the world, Huizhou refinery has the characteristics of plant and process that many petrochemical enterprises do not have.In addition, the crude oil processing capacity of the refinery is 12 million tons per year, which makes the operation equipment of atmospheric and vacuum units in actual production numerous and complicated.In the early stage of modeling, the actual process is properly planned and adjusted by drawing the process principle diagram, so as to increase the accuracy of simulation calculation.In the course of simulation, according to the crude oil properties, Aspen plus simulation software is used to design and set up the simulation parameters in order to select the appropriate physical property method BK10 and the convergence algorithm WEGSTEIN to establish the operation model of atmospheric and vacuum distillation unit.The whole atmospheric and vacuum process was simulated by inputting the corresponding process parameters respectively.Then, the temperature, flow, heat and other operating data of process flow and utility flow are extracted, and the heat transfer network is simulated by Aspen pinch module.Determine the pinch temperature, heat recovery and utility consumption of the system.In addition, in order to verify the correctness of the pinch temperature difference, the pinch temperature and the utility consumption of the heat transfer network under the heat transfer temperature difference are calculated by using Tmin as several temperature values.By drawing grid diagram of heat transfer network, it is found that the actual end temperature of heat transfer is far from the theoretical value by means of pinch calculation, so the heat transfer network has a certain potential for transformation.According to the optimization theory of pinch technology for heat transfer system, the modification scheme is put forward: the heat transfer network is divided into three heat transfer sections: pre-desorption crude oil, post-desorption crude oil and flashover oil, and violates the pinch theory.The new heat transfer process is established by replanning and designing the process section with the potential for transformation.The calculated results show that the final heat transfer temperature of the heat transfer network is improved, the fuel gas consumption is reduced, and the energy recovery rate of the system is increased.Thus, the transformation has certain effect, and can produce the guidance function to the actual operation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE96
【引證文獻(xiàn)】
相關(guān)會議論文 前1條
1 劉向東;;2014年全球石油市場變動態(tài)勢與前景[A];國際經(jīng)濟(jì)分析與展望(2014~2015)[C];2015年
,本文編號:1752540
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1752540.html
最近更新
教材專著