三通道閉式循環(huán)空氣錘鉆進(jìn)系統(tǒng)流場分析
本文選題:油氣資源勘探 切入點(diǎn):閉式循環(huán)空氣錘 出處:《吉林大學(xué)》2017年碩士論文
【摘要】:隨著全球經(jīng)濟(jì)的發(fā)展,人類對能源的需求增加,導(dǎo)致常規(guī)油氣資源的儲量與規(guī)模逐漸減小,開發(fā)難度日益提高。同時(shí),非常規(guī)能源儲量龐大,具有接替常規(guī)油氣資源的潛力,但其開發(fā)難度大,因此對勘探開采所需技術(shù)要求提高。我國油氣資源儲量相對匱乏,且多處于地質(zhì)條件復(fù)雜的區(qū)域。為解決鉆進(jìn)過程所遇到的難題,提高鉆進(jìn)效率,節(jié)約鉆進(jìn)成本,創(chuàng)新提出具有三通道的閉式循環(huán)空氣錘沖擊回轉(zhuǎn)鉆進(jìn)工藝,該鉆井工藝主要特點(diǎn)在于壓縮氣體獨(dú)立循環(huán)驅(qū)動空氣錘高效沖擊回轉(zhuǎn)鉆進(jìn),同時(shí)配合鉆井泥漿循環(huán)排渣并保護(hù)孔壁穩(wěn)定。其鉆具系統(tǒng)主要包括:同軸三壁鉆桿、閉式循環(huán)空氣錘及相應(yīng)的球齒鉆頭。本文對該鉆進(jìn)系統(tǒng)的各個(gè)流場進(jìn)行數(shù)值模擬分析,包括同軸三壁鉆桿內(nèi)的氣體流場、閉式循環(huán)空氣錘內(nèi)的氣體流場以及孔底鉆頭處的鉆井泥漿流場,具體研究內(nèi)容和結(jié)論主要有:1.利用Flow Simulation軟件對同軸三壁鉆桿內(nèi)的氣體流場進(jìn)行分析。首先對三種不同結(jié)構(gòu)的接頭方式進(jìn)行局部流場分析,確定最優(yōu)的接頭結(jié)構(gòu)。再為最優(yōu)接頭結(jié)構(gòu)設(shè)計(jì)不同的尺寸參數(shù),并對其進(jìn)行合理優(yōu)化。結(jié)果表明,當(dāng)鉆桿接頭的導(dǎo)向凸臺伸出接頭底端一定距離時(shí),鉆桿的壓力損失可大幅降低;鉆桿接頭的結(jié)構(gòu)尺寸對壓力降的影響相對較小。最終分析單根鉆桿的氣體流場通道在不同供氣條件下的壓力損失情況。鉆桿壓力降隨著供氣壓力的升高而降低,隨著供氣量的增加而升高。2.對閉式循環(huán)空氣錘的流場進(jìn)行分析,其壓力損失主要包括兩個(gè)方面,分別為壓縮氣體驅(qū)動潛孔錘做功所消耗的能量和壓縮氣體在內(nèi)部通道流動所形成的壓力損失。利用AMESim軟件對閉式循環(huán)空氣錘工作過程進(jìn)行模擬分析,確定其在不同的供氣條件下的工作情況,為鉆進(jìn)過程中空壓機(jī)的參數(shù)設(shè)置提供依據(jù)。分析結(jié)果表明,隨著供氣壓力的增加,閉式循環(huán)空氣錘的工作性能提高,但壓縮氣體的流量也相應(yīng)增加,對空壓機(jī)的要求提高。利用Flow Simulation軟件計(jì)算不同壓力條件下,壓縮氣體在潛孔錘內(nèi)部通道的壓力損失。供氣壓力升高,閉式循環(huán)空氣錘內(nèi)通道的壓力損失降低,且隨著供氣壓力的升高,壓力損失下降的趨勢減小。3.對孔底鉆頭處的鉆井泥漿流場進(jìn)行模擬,利用Fluent軟件分析鉆頭水口在不同直徑和不同傾斜角度時(shí)孔底的流場情況。分析結(jié)果認(rèn)為,鉆頭水口直徑越小,越有利于孔底清洗和輔助碎巖,但對泥漿泵的功率要求提高。鉆頭水口的傾斜角度過大或過小都不利于孔底巖屑的清洗和運(yùn)移,傾斜角度為15°時(shí)能達(dá)到更好的清洗孔底的效果。為鉆頭結(jié)構(gòu)的優(yōu)化設(shè)計(jì)和鉆井工程中泥漿泵工作參數(shù)的選取提供了理論依據(jù)。
[Abstract]:With the development of global economy, the demand for energy is increasing, which leads to the decrease of reserves and scale of conventional oil and gas resources and the increasing difficulty of development.At the same time, the unconventional energy reserves are huge and have the potential to replace the conventional oil and gas resources, but it is difficult to develop, so the technical requirements for exploration and exploitation are raised.Oil and gas reserves in China are relatively scarce, and most of them are located in regions with complicated geological conditions.In order to solve the problems encountered in drilling process, improve drilling efficiency and save drilling cost, a three-channel closed circulation air hammer percussive rotary drilling technology is proposed.The main feature of this drilling process is that the compressed gas independent circulation drives the air hammer high efficiency percussive rotary drilling, at the same time, the drilling mud circulates slag discharge and protects the hole wall stability.Its drilling tool system mainly includes: coaxial three-wall drill pipe, closed circulation air hammer and corresponding ball bit.In this paper, the numerical simulation and analysis of each flow field of the drilling system are carried out, including the gas flow field in the coaxial three-wall drill pipe, the gas flow field in the closed circulation air hammer and the drilling mud flow field at the hole bottom bit.Specific research content and conclusion mainly have 1: 1.The gas flow field in coaxial three-wall drill pipe is analyzed by Flow Simulation software.Firstly, the local flow field of three kinds of joints with different structures is analyzed to determine the optimal joint structure.Then, different dimension parameters are designed for the optimal joint structure, and the reasonable optimization is carried out.The results show that the pressure loss of the drill pipe can be greatly reduced when the bottom end of the drill pipe joint is at a certain distance, and the influence of the structure size of the drill pipe joint on the pressure drop is relatively small.Finally, the pressure loss of the gas flow channel of a single drill pipe under different gas supply conditions is analyzed.The pressure drop of drill pipe decreases with the increase of gas supply pressure and increases with the increase of gas supply.The flow field of a closed circulation air hammer is analyzed. The pressure loss mainly includes two aspects: the energy consumed by the work done by the compressed gas driven DTH hammer and the pressure loss caused by the compressed gas flowing in the internal channel.The working process of closed circulation air hammer is simulated and analyzed by using AMESim software, and its working conditions under different air supply conditions are determined, which provides the basis for the parameter setting of air compressor during drilling.The results show that with the increase of air supply pressure, the working performance of closed cycle air hammer is improved, but the flow rate of compressed gas is also increased, and the requirement of air compressor is raised.Flow Simulation software is used to calculate the pressure loss of compressed gas in the inner channel of DTH hammer under different pressure conditions.With the increase of air supply pressure, the pressure loss of the inner passage of closed circulation air hammer decreases, and with the increase of air supply pressure, the pressure loss decreases by .3.The drilling mud flow field at the hole bottom bit is simulated, and the flow field of the hole bottom at different diameters and inclined angles is analyzed by Fluent software.The analysis results show that the smaller the diameter of bit nozzle is, the more favorable the hole bottom cleaning and auxiliary rock breaking is, but the higher the power requirement of mud pump is.Too large or too small inclined angle of bit nozzle is not conducive to cleaning and migration of hole bottom cuttings, and a better effect of cleaning hole bottom can be achieved when the inclination angle is 15 擄.It provides a theoretical basis for the optimum design of drill bit structure and the selection of working parameters of mud pump in drilling engineering.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE92
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 宋立丹;于穎;;基于FLUENT的固定清洗球的內(nèi)部流場分析[J];機(jī)電信息;2010年23期
2 沈政昌;盧世杰;史帥星;陳東;楊麗君;;基于CFD和PIV方法的單相KYF浮選機(jī)流場分析研究—KYF浮選機(jī)流場測試與仿真研究(二)[J];有色金屬(選礦部分);2013年02期
3 周世輝,時(shí)銘顯;EPVC-IA旋風(fēng)管的流場分析[J];化工學(xué)報(bào);1988年05期
4 毛凱田,經(jīng)樹棟;噴射器的結(jié)構(gòu)改進(jìn)和流場分析[J];化工裝備技術(shù);2005年01期
相關(guān)會議論文 前1條
1 王親猛;;基于VC與CFX的離心泵流場分析系統(tǒng)[A];北京力學(xué)會第15屆學(xué)術(shù)年會論文摘要集[C];2009年
相關(guān)碩士學(xué)位論文 前3條
1 王華;某運(yùn)載火箭發(fā)射燃?xì)饬鲌龅姆抡嬗?jì)算[D];南京理工大學(xué);2017年
2 紀(jì)天坤;三通道閉式循環(huán)空氣錘鉆進(jìn)系統(tǒng)流場分析[D];吉林大學(xué);2017年
3 王成軍;基于CFD內(nèi)流篩轉(zhuǎn)子及篩鼓的流場分析[D];山東理工大學(xué);2012年
,本文編號:1730683
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1730683.html