柴油液相加氫固定床鼓泡反應(yīng)器的混合傳質(zhì)特性及反應(yīng)器模型
本文選題:液相加氫 切入點:固定床鼓泡反應(yīng)器 出處:《浙江大學(xué)》2017年碩士論文
【摘要】:無循環(huán)上流式柴油液相加氫工藝是一種符合低硫柴油生產(chǎn)標(biāo)準(zhǔn)的新生工藝,該工藝不僅能夠有效降低柴油中的硫含量,滿足油品質(zhì)量升級需要,同時能夠節(jié)省大量設(shè)備及操作費用,在石化煉制工業(yè)展現(xiàn)出巨大的發(fā)展?jié)摿。該工藝的核心是以預(yù)飽和的柴油進料,并由柴油中的溶解氫提供反應(yīng)所需的氫氣,消耗的氫氣則通過多點注氫的方式不斷地進行補充。快速有效地供氫是此工藝的關(guān)鍵。本文以無循環(huán)上流式柴油液相加氫工藝所使用的固定床鼓泡反應(yīng)器作為研究對象,一方面通過測定工業(yè)條件下氫氣在直餾柴油中的飽和溶解度,為無循環(huán)上流式柴油液相加氫工藝技術(shù)參數(shù)的確定提供依據(jù);另一方面,則通過冷模實驗的方法對固定床鼓泡反應(yīng)器內(nèi)傳質(zhì)和混合情況進行研究;在此基礎(chǔ)上,建立反應(yīng)器模型,以指導(dǎo)注氫點的設(shè)計及反應(yīng)器的工程化放大。論文主要研究內(nèi)容和成果包括:(1)利用取樣閃蒸的方法測定了工業(yè)條件下氫氣在直餾柴油中的溶解度,重點考察了氫氣溶解度隨操作溫度和壓力的變化規(guī)律,并提出了氫氣在直餾柴油中溶解度的計算模型,模型計算結(jié)果與實驗值的平均相對偏差在10%以內(nèi)。同時,利用Aspen plus軟件建立了氫氣溶解度模擬計算流程,考察了H2S、NH3、CH4等雜質(zhì)氣體對氫氣溶解的影響。結(jié)果發(fā)現(xiàn)升高操作溫度和壓力均有利于提高氫氣在直餾柴油中的溶解度。雜質(zhì)氣體的存在會不同程度的抑制氫氣的溶解,其中CH4氣體的抑制作用最強,NH3次之,H2S最弱。(2)利用溶氧電極法考察了固定床鼓泡反應(yīng)器內(nèi)的氣液傳質(zhì)系數(shù)隨表觀氣速、表觀液速、填料直徑等參數(shù)的變化規(guī)律。在實驗條件下,提高表觀氣液速均會使得氣液傳質(zhì)系數(shù)增大,且表觀液速的影響更為顯著。而隨填料直徑增大,氣液傳質(zhì)系數(shù)則表現(xiàn)出先減小后增大的趨勢。通過對實驗數(shù)據(jù)的分析,回歸得到氣液傳質(zhì)系數(shù)kLa的經(jīng)驗關(guān)聯(lián)式,公式預(yù)測值與實驗值的相對偏差在±20%以內(nèi)。(3)利用電解質(zhì)示蹤法考察了固定床鼓泡反應(yīng)器內(nèi)的液相宏觀停留時間分布隨表觀氣速、表觀液速及填料直徑等參數(shù)的變化規(guī)律。結(jié)果表明,平均停留時間隨表觀液速的增大而減小,隨表觀氣速的增大則沒有明顯變化。當(dāng)填料直徑較小時,平均停留時間隨填料直徑的增大而減小;而當(dāng)填料直徑較大時,繼續(xù)增大填料直徑則對平均停留時間無顯著影響;诓煌瑮l件下的停留時間分布,采用軸向擴散模型對反應(yīng)器內(nèi)返混程度進行計算,結(jié)果顯示返混程度隨表觀液速的增大而減小,隨表觀氣速的增大而增大,且液速對返混程度的影響比氣速更為顯著;返混程度隨填料直徑的增大先減小后增大。通過對多組實驗數(shù)據(jù)的回歸分析,提出了 Pe準(zhǔn)數(shù)與氣液兩相雷諾數(shù)及填料直徑的經(jīng)驗關(guān)聯(lián)式,公式預(yù)測值與實驗值的相對偏差在±20%以內(nèi)。(4)基于實驗測得的氫氣溶解度及氣液傳質(zhì)系數(shù)與返混程度計算關(guān)聯(lián)式,結(jié)合無循環(huán)上流式柴油液相加氫工藝的操作特性,建立了固定床鼓泡反應(yīng)器的數(shù)學(xué)模型。經(jīng)驗算,脫硫效率、脫氮率、總氫耗等模型計算值與文獻值符合較好,誤差在5%以內(nèi)。在此基礎(chǔ)上,使用該模型分析了入口流股溫度、液相空速及氫分壓對脫硫效率和反應(yīng)器進出口溫差的影響。結(jié)果顯示:升高入口流股溫度和降低液相空速都會使得脫硫效率增大,且當(dāng)氫油比≥100 Nm3·m-3,入口流股溫度≥360℃,液相空速LHSV≤2.0h-1時,繼續(xù)升高流股溫度或降低液相空速并不會對脫硫效率產(chǎn)生明顯影響。同時,升高入口流股溫度或降低液相空速均會使得反應(yīng)器進出口溫升增大。提高氫分壓對脫硫效率無顯著影響,但卻會使得反應(yīng)器進出口溫差增大。按照單段床層溫差不超過12℃,反應(yīng)器進出口溫差不超過20℃的原則,用該模型對注氫點的設(shè)計方法進行了討論:總氫油比一定時,單點注氫和多點注氫都能夠降低床層溫升,然而同時也會降低脫硫效率,因此注氫點的設(shè)置需要綜合考慮脫硫效率和床層溫升兩個因素;在本文研究范圍內(nèi),若要保證較高的脫硫效率,中間補償氫氣與柴油的比例應(yīng)小于20Nm3·m-3,并且補氫位置應(yīng)選在靠近床層底部的位置。
[Abstract]:No upflow diesel liquid-phase hydrogenation technology is a new technology with a standard diesel production, this technology can not only effectively reduce the sulfur content in diesel oil, to meet the needs of upgrading the quality of oil, and can save a lot of equipment and operating costs, showing great potential in the petrochemical refining industry. The core of the process is the pre saturated oil feed, and the dissolved hydrogen in diesel oil provides the required for the reaction of hydrogen, the hydrogen consumption is continuously supplied by multi point injection of hydrogen. Hydrogen supply quickly and effectively is the key to this process. This paper in upflow liquid hydrogenation process using diesel the fixed bed bubble reactor as the research object, on the one hand, the saturated solubility determination of industrial conditions in hydrogen from straight-run diesel oil, identified as non upflow diesel liquid hydrogenation technology parameters. For basis; on the other hand, through the cold mold experiments of fixed bed bubble mass transfer and mixing in the reactor were studied; on this basis, the establishment of the reactor model, in order to guide the design of hydrogen injection point amplification and reactor engineering. The main research contents and results include: (1 under the condition of hydrogen solubility in industry) from straight-run diesel oil was determined by the method of sampling flash, focuses on the variation of hydrogen solubility with temperature and pressure, and put forward the calculation model of hydrogen solubility in straight run diesel, the average relative deviation of the model calculation results and the experimental value is less than 10%. At the same time that established the hydrogen solubility simulation flow by using Aspen plus software, the effects of H2S, NH3, CH4 and other impurities in the gas influence on hydrogen dissolved. The results showed that the increase of operating temperature and pressure are beneficial to the improvement of hydrogen gas in diesel oil In the presence of dissolved hydrogen solubility. Can inhibit different levels of impurities in the gas, in which the strongest inhibitory effect of CH4, NH3, H2S is the weakest. (2) investigated the gas-liquid mass transfer coefficient of fixed bed bubble reactor with the superficial gas velocity using oxygen electrode method, superficial liquid velocity changes. Law of filler diameter parameters. Under the experimental conditions, increase the apparent speed will increase the gas-liquid mass transfer coefficient, and the effect of apparent liquid velocity is more obvious. And with the filler diameter increases, the gas-liquid mass transfer coefficient showed the trend of increasing first. Through the analysis of experimental data, experience the correlation regression of the gas-liquid mass transfer coefficient kLa formula, predictive value and relative deviation of the experimental value is less than 20%. (3) investigated the fixed bed bubble reactor macro liquid residence time distribution with the superficial gas velocity using the electrolyte tracer method, superficial liquid velocity and filling Changes of material diameter parameters. The results showed that the average residence time increases with the superficial liquid velocity decreases with the increase of superficial gas velocity does not change significantly. When the filler diameter is small, the average residence time decreases with increasing filler diameter; when the filler diameter is bigger, increasing the diameter of the filling there is no significant effect on the average residence time. The residence time under different conditions based on the distribution, the axial backmixing degree of the reactor within the calculated diffusion model, results show that the mixing degree with the increase of superficial liquid velocity decreases, and increases with the increase of superficial gas velocity, and liquid velocity on the mixing degree the effect is more significant than the gas velocity; mixing with increasing filler diameter decreased and then increased. Through the regression of experimental data analysis, put forward the empirical correlation of Pe number and two-phase Reynolds number and the diameter of the filling, formula The relative deviation of predicted values and experimental values is less than 20%. (4) measured the hydrogen solubility and gas-liquid mass transfer coefficient and mixing formulas based on the operating characteristics of upflow diesel hydrogenation process, a fixed bed bubble reactor mathematical model of experience. And the desulfurization efficiency, nitrogen removal rate, the total hydrogen consumption model calculated values are in good agreement with the literature values, the error is less than 5%. On this basis, using the model to analyze the influence of entrance stream temperature, liquid space velocity and hydrogen partial pressure on the desulfurization efficiency and the temperature difference between inlet and outlet of the reactor. The results show that the increase of entrance stream temperature and reduce the liquid airspeed will make the desulfurization efficiency increases, and when the ratio of hydrogen to oil is more than 100 Nm3 - M-3, entrance stream temperature more than 360 DEG C, liquid phase space velocity of LHSV is less than or equal to 2.0h-1, to increase or reduce the stream temperature of liquid phase space velocity is not desulfurization efficiency of Ming Dynasty Significant impact. At the same time, increase or decrease the entrance stream temperature of liquid phase space velocity will make the reactor temperature rise of import and export increased. The hydrogen partial pressure had no significant effect on the desulfurization efficiency, but it will make the reactor temperature difference between inlet and outlet increases. According to the single bed temperature does not exceed 12 DEG C, the reactor inlet outlet temperature difference not more than 20 DEG C principle, using the model design method of hydrogen point are discussed: the total hydrogen oil ratio, single point and multi-point injection of hydrogen hydrogen injection can reduce the temperature rise of bed, but at the same time it will reduce the efficiency of desulfurization, so injection hydrogen point set needs to consider the desulfurization the efficiency and the bed temperature rise of two factors; in this study, to ensure high desulfurization efficiency, hydrogen gas and diesel intermediate compensation ratio should be less than 20Nm3 and M-3, and the hydrogen supply position should be selected in the near bed bottom position.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE624
【參考文獻】
相關(guān)期刊論文 前10條
1 楊軍;黃子賓;程振民;;低氣液流速下三相固定床的傳質(zhì)特性[J];化學(xué)工程;2016年11期
2 趙檀;張國甲;;淺析柴油加氫工藝技術(shù)進展及發(fā)展展望[J];山東工業(yè)技術(shù);2016年21期
3 李華;湯云超;曾志煜;翁惠新;王基銘;;催化裂化柴油管式液相加氫的實驗研究[J];石油學(xué)報(石油加工);2016年01期
4 吉敏;楊釗;婁曉軍;雍玉梅;楊超;;上流式反應(yīng)器中流體流動及返混特性研究[J];化學(xué)工程;2015年11期
5 謝海群;馮忠偉;;液相加氫技術(shù)應(yīng)用現(xiàn)狀分析[J];煉油與化工;2015年05期
6 陳良;;液相循環(huán)加氫工藝在清潔柴油生產(chǎn)中的應(yīng)用[J];煉油技術(shù)與工程;2015年10期
7 徐志海;;SRH柴油液相循環(huán)加氫技術(shù)在九江石化的工業(yè)應(yīng)用[J];當(dāng)代化工;2015年04期
8 馬文志;;柴油液相加氫精制技術(shù)與傳統(tǒng)加氫精制技術(shù)的比較[J];山東化工;2014年04期
9 郝振岐;梁文萍;肖俊泉;張永奎;;柴油液相循環(huán)加氫技術(shù)的工業(yè)應(yīng)用[J];石油煉制與化工;2013年12期
10 王世麗;翟康;張瑞芹;范利杰;劉永剛;;氫氣在柴油中溶解度的測定與模擬計算[J];化工進展;2013年09期
相關(guān)碩士學(xué)位論文 前1條
1 段同俊;劣質(zhì)柴油加氫改質(zhì)催化劑及工藝研究[D];中國石油大學(xué);2011年
,本文編號:1686290
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1686290.html