鹽脅迫下小球藻油脂富集機(jī)制研究
本文選題:小球藻 切入點(diǎn):鹽脅迫 出處:《湘潭大學(xué)》2015年碩士論文
【摘要】:利用富油微藻生物質(zhì)為原料生產(chǎn)生物柴油的研究已經(jīng)進(jìn)行了幾十年,卻只有少量信息是直接或間接地與藻脂類的生物合成的機(jī)制相關(guān)。因此,揭示脂代謝與環(huán)境相互作用機(jī)制的調(diào)節(jié)對(duì)提高脂質(zhì)積累尤其重要。本文采用鹽脅迫法異養(yǎng)培養(yǎng)小球藻。論文對(duì)鹽脅迫下小球藻的油脂含量、產(chǎn)率與異養(yǎng)培養(yǎng)小球藻之間的對(duì)比進(jìn)行了研究,并對(duì)鈉鹽脅迫下的油脂積累機(jī)制進(jìn)行了探討。主要研究內(nèi)容和結(jié)果如下:1.不同鈉鹽濃度脅迫培養(yǎng)對(duì)小球藻油脂積累的影響小球藻異養(yǎng)培養(yǎng)下,第5天得到最大生物量7.8 g/L。收集到的異養(yǎng)細(xì)胞重新接種到含有0.5 mol/L鈉離子濃度的新鮮培養(yǎng)基中,12 h過后,得到最大油脂含量53.4%。鹽壓迫下的最大油脂產(chǎn)率(625.3 mg/L/d)比異養(yǎng)下的高的多(404.6mg/L/d)。2.不同鉀鹽濃度脅迫培養(yǎng)對(duì)小球藻油脂積累的影響小球藻異養(yǎng)培養(yǎng)后,收集到的小球藻細(xì)胞重新接入到含有氯化鉀的新鮮培養(yǎng)基中,在氯化鉀的濃度為0.6 mol/L,脅迫培養(yǎng)12h后,生物指標(biāo)達(dá)到最優(yōu)結(jié)果,即小球藻生物量、脂肪酸含量7.27 g/L,42.9%。與異養(yǎng)下對(duì)比,鹽壓迫下的油脂產(chǎn)率(623.8 mg/L/d)比異養(yǎng)下的高的多(404.6 mg/L/d)。3.不同鈉鉀鹽濃度組合對(duì)小球藻油脂積累的影響研究采用響應(yīng)面分析方法得出的鈉鉀鹽影響小球藻油脂含量積累工藝參數(shù)的回歸方程為Y=43.22+2.59*A+2.59*B-8.28*A*B-9.98*A*C-7.06*B*C-10.21*C2(A、B、C分別代表鉀鹽濃度、鈉鹽濃度、培養(yǎng)時(shí)間)。回歸系數(shù)為1481.55/1537.31=0.945.優(yōu)化得到的最佳工藝條件為:培養(yǎng)時(shí)間15.79h、鉀離子濃度0.41 mol/L、鈉鹽濃度0.52 mol/L,此工藝條件下油脂含量為48.51%,與預(yù)測值(48.39%)基本一致(相對(duì)誤差僅0.24%),該方程擬合實(shí)際情況較準(zhǔn)確。4.鹽脅迫下油脂積累蛋白質(zhì)組學(xué)機(jī)理分析通過對(duì)具有代表性的富油小球藻普通小球藻研究,揭示了其在NaCl脅迫條件下的油脂代謝調(diào)控機(jī)制。許多代謝途徑,例如,淀粉代謝途徑,糖酵解,TCA循環(huán)途徑,乙醛酸循環(huán)途徑,脂肪酸合成,TAG代謝途徑,蛋白質(zhì)合成和折疊都和油脂代謝途徑直接相關(guān)。油脂合成過程是通過許多細(xì)胞器的緊密合作來實(shí)現(xiàn)的,例如,內(nèi)質(zhì)網(wǎng),線粒體,葉綠體,細(xì)胞質(zhì)基質(zhì),等離子體膜。除此之外,轉(zhuǎn)運(yùn)和調(diào)控,ROS防御功能也間接參與到復(fù)雜的過程當(dāng)中。
[Abstract]:The production of biodiesel from oil-rich microalgae biomass has been studied for decades, but only a small amount of information is directly or indirectly related to the mechanism of algal biosynthesis. The regulation of lipid metabolism and environment interaction mechanism is particularly important to increase lipid accumulation. In this paper, the heterotrophic culture of Chlorella vulgaris was carried out under salt stress, and the content of lipid in Chlorella vulgaris under salt stress was studied. The comparison between yield and heterotrophic culture of Chlorella vulgaris was studied. The mechanism of oil accumulation under sodium salt stress was also discussed. The main contents and results were as follows: 1. The effects of different sodium concentration stress on the accumulation of oil and oil in Chlorella vulgaris were studied under heterotrophic culture of Chlorella vulgaris. On the 5th day, the maximum biomass of 7.8g / L. the heterotrophic cells collected were reseeded into a fresh medium containing 0.5 mol/L sodium ion for 12 h. The maximum oil content was 53.4%. The maximum oil yield under salt pressure was 625.3 mg / L / d) higher than that under heterotrophic condition. The effects of different potassium concentrations on the accumulation of oil in Chlorella vulgaris were studied. The collected chlorella cells were re-inserted into the fresh medium containing potassium chloride. When the concentration of potassium chloride was 0.6 mol / L, under stress for 12 h, the biological index reached the optimal result, that is, the biomass of Chlorella vulgaris, the fatty acid content of 7.27 g / L, 42.9%, compared with heterotrophic. The oil yield under salt pressure (623.8 mg / L / d) was higher than that under heterotrophic condition (404.6 mg / L / L / d 路3.Influence of different concentrations of sodium and potassium on oil accumulation of Chlorella vulgaris; response surface analysis method was used to study the effect of sodium and potassium salt on oil accumulation of Chlorella vulgaris. The regress equation of the technical parameters is: Yang 43.22 2.59 A 2.59 B 8.28 AZB 9.98 A C 7.06 C C 10.21 C _ 2 C ~ (2 +) A ~ (2 +) B _ (1) C represent the concentration of potassium salt, respectively. Sodium concentration, The regression coefficient is 1481.55 / 1537.31 / 0.945. The optimum conditions are as follows: culture time 15.79 h, potassium concentration 0.41 mol / L, sodium concentration 0.52 mol / L, and the oil content is 48.51l / L, which is consistent with the predicted value of 48.39% (relative error is only 0.24%). The equation fitted the actual situation more accurately .4.The proteomics mechanism of oil accumulation under salt stress was analyzed through the study of typical Chlorella vulgaris. Many metabolic pathways, such as starch metabolism pathway, glycolytic TCA cycle pathway, glyoxylic acid cycle pathway, fatty acid synthesis pathway, and fatty acid synthesis pathway, were revealed. Protein synthesis and folding are directly related to lipid metabolic pathways. Lipid synthesis is achieved through close cooperation of many organelles, such as endoplasmic reticulum, mitochondria, chloroplast, cytoplasmic matrix, plasma membrane, etc. Ros defense functions are also indirectly involved in complex processes.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE667
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 席瑋芳;周芳;;產(chǎn)油微藻的篩選及大規(guī)模培養(yǎng)的研究進(jìn)展[J];氨基酸和生物資源;2013年04期
2 馬紅芳;莊黎寧;李飛;;2種新分離微藻的生長、氮磷去除和營養(yǎng)特性的比較研究[J];環(huán)境工程學(xué)報(bào);2013年11期
3 劉林林;黃旭雄;危立坤;曾蓓蓓;穆亮亮;劉志堅(jiān);蔡志武;;15株微藻對(duì)豬場養(yǎng)殖污水中氮磷的凈化及其細(xì)胞營養(yǎng)分析[J];環(huán)境科學(xué)學(xué)報(bào);2014年08期
4 倪邦慶;林一鳴;毛煒陶;張萍波;范明明;;Bronsted酸性雙核離子液體催化大豆油合成生物柴油(英文)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2014年12期
5 胡洪營;吳光學(xué);吳乾元;管運(yùn)濤;李歡;陶益;;面向污水資源極盡利用的污水精煉技術(shù)與模式探討[J];環(huán)境工程技術(shù)學(xué)報(bào);2015年01期
6 危立坤;黃旭雄;黃征征;;Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources[J];Chinese Journal of Oceanology and Limnology;2015年01期
7 吳義誠;王澤杰;劉利丹;鄧歡;趙峰;;利用光微生物燃料電池實(shí)現(xiàn)養(yǎng)豬廢水資源化利用研究[J];環(huán)境科學(xué)學(xué)報(bào);2015年02期
8 李曉敏;王興s,
本文編號(hào):1670624
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1670624.html