化學(xué)預(yù)處理增產(chǎn)生物成因煤層氣研究
本文選題:生物煤層氣 切入點(diǎn):化學(xué)預(yù)處理 出處:《太原理工大學(xué)》2017年碩士論文
【摘要】:作為一種非常規(guī)能源資源,煤層氣的開(kāi)發(fā)與利用,一方面可以大大降低煤炭資源的開(kāi)采成本,另一方面可以確保能源的可持續(xù)發(fā)展。按照形成原因,煤層氣可以分為兩類:生物成因煤層氣和熱成因煤層氣。目前普遍認(rèn)為,生物成因煤層氣的生成過(guò)程主要是由煤層中的本源產(chǎn)甲烷菌群將煤中的大分子有機(jī)物逐步轉(zhuǎn)化為小分子有機(jī)化合物,進(jìn)而轉(zhuǎn)化為生物甲烷。由此,生物成因煤層氣能夠在一定程度上實(shí)現(xiàn)煤層氣的“再生”,對(duì)改變我國(guó)“富煤少氣”的能源結(jié)構(gòu)具有重要作用,科學(xué)及現(xiàn)實(shí)意義重大。然而,多種因素導(dǎo)致生物成因煤層氣的產(chǎn)氣效率較低。目前普遍認(rèn)為,生物降解煤的限制因素主要是煤結(jié)構(gòu)的復(fù)雜性和難降解性。本文提出采用有效方法在生物轉(zhuǎn)化之前對(duì)煤進(jìn)行預(yù)處理,來(lái)降低煤分子的復(fù)雜性,提升煤分子的生物有效性,以提高生物煤層氣的產(chǎn)生效率。本文采用傳代、富集的方法從沁水盆地煤層氣田產(chǎn)出水中獲得了無(wú)煙煤降解高效菌群,并確定了最佳生長(zhǎng)條件;利用FTIR、X-RD、GC-MS技術(shù),通過(guò)煤官能團(tuán)、煤晶核、降解中間產(chǎn)物3方面初步分析了菌群的降解機(jī)理。在此基礎(chǔ)上,研究了不同濃度硝酸、高錳酸鉀、雙氧水、氫氧化鈉預(yù)處理煤的生物煤層氣增產(chǎn)效果,以產(chǎn)氣量為核心評(píng)價(jià)指標(biāo),優(yōu)選出最佳的預(yù)處理?xiàng)l件,并通過(guò)FTIR、X-RD技術(shù)分析了預(yù)處理及隨后的產(chǎn)氣過(guò)程中煤官能團(tuán)和煤晶核的變化情況,初步分析了預(yù)處理增產(chǎn)生物甲烷的機(jī)理。研究發(fā)現(xiàn):(1)成功培育出降解無(wú)煙煤的高效菌群,其最佳產(chǎn)氣條件為:溫度,35℃;耐鹽度,1.1%~1.2%;粒徑,0.15~0.25mm;p H,8~9;煤(g)與菌液(ml)之比,1:5;最佳接種時(shí)間,20d。在降解煤產(chǎn)甲烷的過(guò)程中,酚、醇、醚、脂的C-O的伸縮振動(dòng)以及苯環(huán)骨架振動(dòng)的吸收峰面積逐漸減小;煤的晶核結(jié)構(gòu)不斷減小,煤的芳環(huán)結(jié)構(gòu)變得膨脹疏松;培養(yǎng)液中的中間代謝產(chǎn)物有芳香族物質(zhì)、長(zhǎng)鏈脂肪酸、甲酸、乙酸、酚、醇、醚、脂等物質(zhì)出現(xiàn)。整個(gè)降解過(guò)程遵循了厭氧生物典型發(fā)酵理論的模式,即煤的大分子不斷降解為小分子,最終被微生物利用產(chǎn)生甲烷的過(guò)程。(2)優(yōu)選出最佳煤預(yù)處理?xiàng)l件為:30%的H_2O_2處理12h和1.5M Na OH處理12h,產(chǎn)氣量分別提高12.5%和15.5%。(3)H_2O_2預(yù)處理過(guò)程中,煤官能團(tuán)主要體現(xiàn)在取代芳烴以及苯環(huán)的骨架振動(dòng)的吸收峰不斷減小,煤晶核結(jié)構(gòu)主要體現(xiàn)在其體積的縮小,這是以雙氧水對(duì)其外部分子的氧化作用為前提而完成的,即這是一個(gè)使小分子被氧化脫落的過(guò)程。Na OH預(yù)處理過(guò)程中,煤官能團(tuán)主要體現(xiàn)在甲基、亞甲基的吸收峰不斷減小,這是堿機(jī)理作用的結(jié)果,而煤的晶核結(jié)構(gòu)的減小,主要是氫氧化鈉的強(qiáng)腐蝕性的原因造成的。(4)H_2O_2預(yù)處理后煤產(chǎn)氣過(guò)程中,煤官能團(tuán)主要體現(xiàn)在酚類、醇類、醚類物質(zhì)的C-O吸收峰以及苯環(huán)的骨架振動(dòng)的吸收峰的面積是不斷減小的,這說(shuō)明經(jīng)H_2O_2處理后,以酚類、醇類、醚類以及芳香族物質(zhì)作為主要產(chǎn)氣基質(zhì)的物質(zhì)更易被利用;煤的晶核結(jié)構(gòu)呈現(xiàn)出不斷減小的趨勢(shì),這表明在微生物的作用下,其堆砌高度以及延展度都有所減小,這正與產(chǎn)甲烷過(guò)程中煤中有機(jī)質(zhì)的降解過(guò)程相對(duì)應(yīng)。Na OH預(yù)處理后的煤產(chǎn)氣過(guò)程中,煤官能團(tuán)主要體現(xiàn)在含有苯環(huán)的骨架振動(dòng)的吸收峰不斷減小,這說(shuō)明煤的大分子不斷降解,進(jìn)而轉(zhuǎn)化為酚類、醇類等物質(zhì),進(jìn)而被利用產(chǎn)氣;煤的晶核結(jié)構(gòu)雖有所減小,但減小量并不是特別顯著。(5)H_2O_2預(yù)處理增產(chǎn)生物煤層氣,主要是由于其本身的氧化性發(fā)生作用,Na OH預(yù)處理增產(chǎn)生物煤層氣,主要是堿作用的結(jié)果。(6)煤的生物降解產(chǎn)甲烷過(guò)程十分復(fù)雜,在煤的生物轉(zhuǎn)化之前,采用有效的預(yù)處理方式對(duì)煤進(jìn)行處理,如H_2O_2和Na OH對(duì)煤進(jìn)行處理,可有效提高生物甲烷的產(chǎn)生效率。
[Abstract]:As a kind of unconventional energy resources, development and utilization of coal-bed gas, on the one hand, can greatly reduce the cost of the exploitation of coal resources, on the other hand can ensure the sustainable development of energy. According to the causes of CBM can be divided into two types: biogenic coalbed gas and heat for Coalbed gas. It is generally believed that generation the process of biogenic coalbed gas in coal seam is mainly composed of the origin of methanogens macromolecular organic compounds in coal gradually transformed into small molecular organic compounds, and then converted into bio methane. Thus, biogenic coalbed gas can to a certain extent in the CBM "regeneration" to change China's "rich coal less gas" energy structure plays an important role in the scientific and practical significance. However, many factors lead to biogenic coalbed methane gas production efficiency is relatively low. It is generally believed that limits the biodegradation of coal The main is the complexity of coal structure and refractory. This paper adopts the effective method in the bioconversion of coal before pretreatment, to reduce the complexity of coal molecules, biological effectiveness of coal molecule, which is in order to improve the efficiency of biological gas. This paper uses the method of subculture, enrichment from Qinshui Basin Coalbed gas output the water won the anthracite degrading bacteria, and the optimum growth conditions were determined by FTIR, X-RD, GC-MS; technology, through the coal group coal nuclei, 3 degradation intermediates, preliminary analysis of the degradation mechanism of bacteria. On this basis, the effects of different concentrations of nitric acid, hydrogen peroxide, Potassium Permanganate, biogenic coalbed gas effect of NaOH pretreatment of coal to gas production as the core of the evaluation index, select the optimal pretreatment conditions, and through FTIR, X-RD analysis of the pretreatment and subsequent gas production in the process of official Can group and the change of coal nuclei, preliminary analysis of the mechanism of production of biogenic methane. The study found that: (1) successful breeding of high efficient bacteria degradation of anthracite, the best gas production conditions: temperature, salinity, 35 DEG C; 1.1%~1.2%; 0.15~0.25mm; P diameter, H, 8~9; coal (g) and bacteria (ML) ratio, 1:5; the best time of inoculation, 20d. in the degradation process of coal methane production, phenol, alcohol, ether, ester C-O stretching vibration and benzene skeleton vibration absorption peak area gradually decreases; crystal structure of coal decreases, the aromatic ring structure of coal the expansion has become loose; aromatic substances in the liquid culture of intermediate metabolites, long chain fatty acid, formic acid, acetic acid, phenol, alcohol, ether, fat and other matter. The degradation process followed the anaerobic fermentation of typical theory model, namely coal macromolecular continuously degraded into small molecules, the final process (methane producing by microorganisms. 2) the best coal pretreatment conditions: H_2O_2 12h and 1.5M Na 30% OH 12h, gas production increased by 12.5% and 15.5%. (3) H_2O_2 in the process of pretreatment, coal group mainly decreases in substituted aromatic and benzene skeleton vibration absorption peak, mainly reflected in the crystal structure of coal the volume reduction, this is the external molecules with hydrogen peroxide oxidation is the premise to complete, which is a small molecule is oxidized off process of.Na OH pretreatment process, coal is mainly reflected in the methyl groups, the absorption peak of methylene decreases, this is the result of base mechanism. The crystal structure of coal decreases, is mainly caused by the corrosive reason of sodium hydroxide. (4) H_2O_2 after pretreatment of coal gas production process, coal group is mainly reflected in the phenol, alcohol, ether substance absorption peak at C-O and benzene ring skeleton The vibration absorption peak of the area is decreasing, indicating that after H_2O_2 treatment with phenols, alcohols, ethers and aromatic substances as the main gas producing matrix material is more easily used; crystal structure of coal showed a decreasing trend, suggesting that the microorganisms were used, the the stack height and the ductility is reduced, which is working with the degradation process of organic matter in coal methane production in the process of coal gas production process corresponding to.Na OH after pretreatment, coal groups mainly reflected absorption peaks in the skeleton vibration containing benzene ring decreases, indicating that the coal macromolecular continuous degradation, and then into the phenols, alcohols and other substances, and then by using gas production; crystal structure of coal was decreased, but the reduction is not particularly significant. (5) H_2O_2 pretreatment increased biogenic coalbed gas, mainly due to its oxidation effect, Na OH pretreatment The biological yield of coalbed gas, mainly alkali effect. (6) the biodegradation process of coal methane production is very complex, before the conversion of coal by biological pretreatment, effective treatment for coal, such as H_2O_2 and Na OH on coal processing, can effectively improve the production efficiency of biogenic methane.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE37
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張遂安;有關(guān)煤層氣勘探過(guò)程中的理論誤導(dǎo)剖析[J];中國(guó)煤層氣;2004年02期
2 楊偉;陳天磊;張蕊;;煤層氣的開(kāi)采技術(shù)淺談[J];科技信息(科學(xué)教研);2008年19期
3 ;2009亞洲太平洋國(guó)際煤層氣會(huì)議暨2009年中國(guó)煤層氣學(xué)術(shù)會(huì)議征文通知[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2009年03期
4 李虎成;;豫一煤層氣項(xiàng)目動(dòng)工[J];煤炭工程;2010年05期
5 ;2012年《中國(guó)煤層氣》征訂單[J];中國(guó)煤層氣;2011年06期
6 ;2013年《中國(guó)煤層氣》征訂單[J];中國(guó)煤層氣;2012年05期
7 ;2014年《中國(guó)煤層氣》征訂單[J];中國(guó)煤層氣;2013年05期
8 張泓,彭格林;簡(jiǎn)評(píng)《地質(zhì)辭典》中的“煤層氣”詞條[J];煤田地質(zhì)與勘探;2001年02期
9 馬東民,殷屈娟;影響韓城地區(qū)煤層氣產(chǎn)出的主要因素[J];西安科技學(xué)院學(xué)報(bào);2002年02期
10 ;哈參1井喜獲煤層氣[J];吐哈油氣;2002年01期
相關(guān)會(huì)議論文 前10條
1 李貴中;王紅巖;劉洪林;吳立新;;煤層氣富集規(guī)律[A];2004年全國(guó)瓦斯地質(zhì)年會(huì)學(xué)術(shù)交流論文集[C];2004年
2 岳巍;葉建平;高洪烈;武強(qiáng);陳春琳;葉貴均;李紅柱;翟振榮;劉軍正;;控制煤層氣潛能的水文地質(zhì)研究[A];2003年度中國(guó)煤炭工業(yè)協(xié)會(huì)科學(xué)技術(shù)獎(jiǎng)獲獎(jiǎng)項(xiàng)目匯編[C];2004年
3 任倫祥;柏萬(wàn)春;;四川省古藺縣石寶礦段煤層氣勘探開(kāi)發(fā)對(duì)策研究[A];2013年煤層氣學(xué)術(shù)研討會(huì)論文集[C];2013年
4 李慶謀;段旭;杜愛(ài)民;劉效賢;;煤層氣地球物理測(cè)井評(píng)價(jià)研究[A];1996年中國(guó)地球物理學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];1996年
5 趙慶波;;中國(guó)煤層氣勘探成果及認(rèn)識(shí)[A];煤層氣勘探開(kāi)發(fā)理論與實(shí)踐[C];2007年
6 尹中山;;川南煤田古敘礦區(qū)煤層氣勘探選層的探討[A];2008年煤層氣學(xué)術(shù)研討會(huì)論文集[C];2008年
7 任光軍;王莉;婁劍青;;柳林地區(qū)水文地質(zhì)特征及其對(duì)煤層氣生產(chǎn)井的影響[A];2008年煤層氣學(xué)術(shù)研討會(huì)論文集[C];2008年
8 孫斌;趙慶波;邵龍義;李五忠;;大寧—韓城地區(qū)煤層氣勘探目標(biāo)評(píng)價(jià)研究[A];煤層氣勘探開(kāi)發(fā)理論與實(shí)踐[C];2007年
9 劉洪林;王紅巖;李貴中;楊帆;劉洪建;;燕山期構(gòu)造熱事件對(duì)太原西山煤層氣高產(chǎn)富集影響[A];2004年全國(guó)瓦斯地質(zhì)年會(huì)學(xué)術(shù)交流論文集[C];2004年
10 昝崇信;張德利;;合陽(yáng)煤層氣勘探及評(píng)價(jià)井工程實(shí)錄[A];安全高效煤礦地質(zhì)保障技術(shù)及應(yīng)用——中國(guó)地質(zhì)學(xué)會(huì)、中國(guó)煤炭學(xué)會(huì)煤田地質(zhì)專業(yè)委員會(huì)、中國(guó)煤炭工業(yè)勞動(dòng)保護(hù)科學(xué)技術(shù)學(xué)會(huì)水害防治專業(yè)委員會(huì)學(xué)術(shù)年會(huì)文集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 記者 胡愛(ài)民 通訊員 劉艷新;中加煤層氣項(xiàng)目本月底開(kāi)鉆[N];中國(guó)化工報(bào);2006年
2 梅嬌;煤層氣勘探開(kāi)發(fā)潛力巨大[N];中國(guó)礦業(yè)報(bào);2006年
3 張金萍;煤層氣,大規(guī)?辈殚_(kāi)發(fā)帷幕拉開(kāi)[N];地質(zhì)勘查導(dǎo)報(bào);2006年
4 本報(bào)記者 陳其玨;私募基金8800萬(wàn)美元砸向中華煤層氣[N];上海證券報(bào);2008年
5 白清榮 劉富根;我國(guó)規(guī);簩託馓锸痉豆こ掏懂a(chǎn)[N];中國(guó)化工報(bào);2009年
6 特約記者 陳保國(guó);中加合作開(kāi)發(fā)山西煤層氣[N];中國(guó)化工報(bào);2005年
7 楊堅(jiān);中美合作開(kāi)發(fā)恩洪煤層氣[N];中國(guó)礦業(yè)報(bào);2002年
8 李學(xué)斌 朱勇 本版責(zé)編 魯曉華;西南地區(qū)第一口煤層氣鉆井點(diǎn)火成功[N];中煤地質(zhì)報(bào);2005年
9 陸晉梁;山西欲大規(guī)模開(kāi)發(fā)利用煤層氣[N];中國(guó)經(jīng)濟(jì)導(dǎo)報(bào);2006年
10 陳明 李建民;黃石煤層氣開(kāi)采進(jìn)入實(shí)質(zhì)性階段[N];中國(guó)經(jīng)濟(jì)導(dǎo)報(bào);2006年
相關(guān)碩士學(xué)位論文 前4條
1 郭小軍;鄂爾多斯盆地石炭—二疊紀(jì)聚煤規(guī)律與煤層氣勘探有利區(qū)優(yōu)選[D];中國(guó)石油大學(xué);2010年
2 鄭翔天;沁水盆地煤層氣富集區(qū)地震地質(zhì)識(shí)別[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
3 張金龍;化學(xué)預(yù)處理增產(chǎn)生物成因煤層氣研究[D];太原理工大學(xué);2017年
4 王得權(quán);山西白額晚古生代沉積特征與煤層氣烴源巖影響研究[D];河北工程大學(xué);2010年
,本文編號(hào):1662875
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1662875.html