基于超級電容的礦井提升設(shè)備功率補償及能量回收系統(tǒng)研究
發(fā)布時間:2018-03-18 11:05
本文選題:修井機 切入點:超級電容 出處:《北京交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:我國油田井場電網(wǎng)容量小,采用單一的井場電網(wǎng)作為電動修井機的能量來源往往功率不足,造成電動修井機工作效率低下。本文以XJ250型電動修井機為研究對象,研發(fā)了一套基于超級電容的功率補償系統(tǒng),可實現(xiàn)補償井場電網(wǎng)功率不足,使XJ250型電動修井機工作在同種規(guī)格傳統(tǒng)修井機的工況下,并且具有吸收電動修井機制動能量的功能。 本文首先分析了電動修井機實際運行的工作狀況,研究了其工作時序及能量和功率的需求,提出了采用超級電容作為儲能媒介的功率補償方案;其次在分析超級電容基本工作原理的基礎(chǔ)上,分析了超級電容器的等效電路模型;然后結(jié)合電動修井機的工況和超級電容本身的特點進行了容量配置研究。 為了對超級電容功率補償系統(tǒng)的控制策略進行研究,首先利用狀態(tài)空間平均法建立了系統(tǒng)在Buck和Boost工作模式下的小信號分析模型,并完成了電壓電流雙閉環(huán)控制器的設(shè)計;在雙環(huán)控制方法的基礎(chǔ)上,針對電動修井機實際工況的不同和井場電網(wǎng)空載電壓波動的問題,本文提出了基于檢測電機轉(zhuǎn)速和動態(tài)閾值調(diào)整的控制策略,即修井機運行在下放負載及摘鉤工況,電機停止運行,電機轉(zhuǎn)速nnCH且母線電壓UdcUCH,系統(tǒng)工作在能量存儲模式;修井機運行在上提負載工況,電機運行,電機轉(zhuǎn)速nnDCH且UdcUDCH,系統(tǒng)工作在功率補償模式;由于井場電網(wǎng)網(wǎng)壓全天波動較大,設(shè)定恒定的充放電閾值差,根據(jù)檢測的空載電壓與充放電閾值差做差,得到隨網(wǎng)壓波動而調(diào)整的充放電閾值,使系統(tǒng)工作在額定狀態(tài),并通過仿真驗證了控制策略的可行性。 最后,以XJ250型電動修井機為實驗樣機,開發(fā)了80kW超級電容功率補償系統(tǒng),包括主電路設(shè)計、控制電路設(shè)計、通信監(jiān)控系統(tǒng)及軟件程序的設(shè)計與開發(fā)。通過在河南中原油田的現(xiàn)場運行考核,驗證了樣機設(shè)計的合理性及穩(wěn)定性,同時也驗證了本文提出的控制策略的可行性。
[Abstract]:Because of the small capacity of well site network in oil field in China, the use of single well site network as the energy source of electric workover machine is often insufficient, which results in the low working efficiency of electric workover machine. This paper takes XJ250 electric workover machine as the research object. A power compensation system based on super capacitor is developed, which can compensate for the lack of power in the well site network, make the XJ250 electric workover machine work under the same specifications of the traditional workover machine, and have the function of absorbing the dynamic energy of the electric workover mechanism. This paper first analyzes the actual operation of the electric workover machine, studies its working sequence, energy and power requirements, and puts forward a power compensation scheme using super capacitor as the energy storage medium. Secondly, on the basis of analyzing the basic working principle of super capacitor, the equivalent circuit model of super capacitor is analyzed, and then the capacity configuration of super capacitor is studied according to the working condition of electric workover machine and the characteristics of super capacitor itself. In order to study the control strategy of ultracapacitor power compensation system, the small signal analysis model of the system under Buck and Boost mode is established by using the state space averaging method, and the design of the voltage and current double closed loop controller is completed. On the basis of double loop control method, aiming at the different actual working conditions of electric workover machine and the problem of no-load voltage fluctuation in well site network, a control strategy based on detecting motor speed and adjusting dynamic threshold is put forward in this paper. The workover machine operates in the down-load and off-hook conditions, the motor stops running, the motor rotate speed nnCH and the bus voltage UDC UCH, the system works in the energy storage mode, the workover machine runs in the upload condition, the motor runs, The speed of motor is nnDCH and Udc UDCH, the system works in power compensation mode, because of the large fluctuation of network voltage in well site throughout the day, the constant charging and discharging threshold difference is set, and the difference between the measured no-load voltage and charge / discharge threshold is poor, The charging and discharging threshold adjusted with grid voltage fluctuation is obtained, which makes the system work in rated state, and the feasibility of the control strategy is verified by simulation. Finally, the 80kW super capacitor power compensation system is developed with XJ250 electric workover machine as the experimental prototype, including main circuit design and control circuit design. The design and development of communication monitoring system and software program. The rationality and stability of the prototype design are verified by field operation examination in Zhongyuan Oilfield, Henan Province, and the feasibility of the control strategy proposed in this paper is also verified.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE935
【參考文獻】
相關(guān)期刊論文 前8條
1 趙洋;梁海泉;張逸成;;電化學(xué)超級電容器建模研究現(xiàn)狀與展望[J];電工技術(shù)學(xué)報;2012年03期
2 鐘海云,李薦,戴艷陽,李慶奎;新型能源器件——超級電容器研究發(fā)展最新動態(tài)[J];電源技術(shù);2001年05期
3 趙增輝;;XJ70DBZ電動修井機變頻控制系統(tǒng)設(shè)計與應(yīng)用[J];電工技術(shù);2013年05期
4 趙有清;牛燕;陳龔;陳軍;;油電雙動力修井機經(jīng)濟效益分析[J];科技與企業(yè);2013年16期
5 顧心懌,潘偉,張愛恩,王運安,李德堂,陳玉梅,奕桂華;具有節(jié)能和環(huán)保優(yōu)勢的液壓蓄能修井機[J];石油機械;2003年S1期
6 謝永金;我國修井機發(fā)展的技術(shù)現(xiàn)狀與展望[J];石油機械;2005年10期
7 童亦斌;吳\,
本文編號:1629305
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1629305.html
最近更新
教材專著