液化氣體的熱分層及爆沸機(jī)理研究
本文關(guān)鍵詞: 液化氣體 儲(chǔ)罐 熱響應(yīng) 熱分層 爆沸 出處:《大連理工大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:液化氣體儲(chǔ)罐是液化氣體儲(chǔ)運(yùn)過(guò)程中的核心設(shè)備和主要危險(xiǎn)源;馂(zāi)熱侵襲會(huì)引起儲(chǔ)罐內(nèi)部介質(zhì)的溫度與壓力升高,罐體強(qiáng)度下降。一旦儲(chǔ)罐破裂,可能引發(fā)危害性極大的沸騰液體膨脹蒸氣爆炸(簡(jiǎn)稱BLEVE)。對(duì)液化氣體儲(chǔ)罐的熱響應(yīng)及BLEVE的研究,可為液化氣體儲(chǔ)罐的事故預(yù)防及控制提供理論依據(jù)。國(guó)內(nèi)外學(xué)者在這方面進(jìn)行了大量研究工作,探討了液化氣體儲(chǔ)罐的熱響應(yīng)過(guò)程,獲得了一些很有價(jià)值的結(jié)論。然而,由于此過(guò)程涉及儲(chǔ)罐與其內(nèi)部介質(zhì)的耦合傳熱及氣液兩相非平衡熱力學(xué)傳質(zhì)問(wèn)題,至今熱分層及其消除機(jī)理以及BLEVE過(guò)程機(jī)理尚未形成一致結(jié)論,有待進(jìn)一步研究。鑒于此,本文主要開(kāi)展了以下幾方面的研究工作: (1)建立了用于模擬液化氣體熱響應(yīng)及BLEVE過(guò)程的實(shí)驗(yàn)系統(tǒng)。該系統(tǒng)可對(duì)加熱區(qū)域、熱流密度、充裝率、初始溫度等參數(shù)進(jìn)行控制,可監(jiān)測(cè)熱響應(yīng)過(guò)程中的溫度分布和介質(zhì)的對(duì)流及沸騰現(xiàn)象,并可記錄快速泄壓過(guò)程中的瞬態(tài)壓力變化。 (2)進(jìn)行了液化氣體熱分層實(shí)驗(yàn),通過(guò)分析介質(zhì)在受熱條件下的溫度響應(yīng)和近壁面的兩相流動(dòng),揭示了熱分層的形成和發(fā)展機(jī)理。結(jié)果表明,單相浮升力驅(qū)動(dòng)下的自然對(duì)流使熱分層形成,壁面上出現(xiàn)的核態(tài)沸騰通過(guò)對(duì)液相區(qū)的擾動(dòng)促使熱分層消除;谝陨蠙C(jī)理,重點(diǎn)研究了受熱條件和介質(zhì)條件對(duì)熱分層發(fā)展過(guò)程的影響規(guī)律。在氣、液相壁同時(shí)受熱時(shí),氣相區(qū)向液相區(qū)傳熱,氣相加熱區(qū)域的增大會(huì)加大液相的熱分層度及熱分層的維持時(shí)間。介質(zhì)的物性影響其對(duì)流傳熱及相變速率,從而影響輸入熱流的空間分布、分層區(qū)的擴(kuò)展速度、氣相升溫速率、液相的沸騰強(qiáng)度與核化點(diǎn)分布,進(jìn)而影響熱分層度。 (3)通過(guò)介質(zhì)的快速泄放實(shí)驗(yàn)?zāi)M液化氣體的BLEVE過(guò)程,并結(jié)合數(shù)值模擬方法研究了爆沸過(guò)程的機(jī)理。結(jié)果表明,快速泄壓導(dǎo)致液體過(guò)熱及爆沸,在儲(chǔ)罐泄壓和介質(zhì)過(guò)熱沸騰兩種機(jī)制的耦合作用下,儲(chǔ)罐內(nèi)部壓力呈現(xiàn)“降壓—升壓—降壓”的響應(yīng)過(guò)程。介質(zhì)充裝率為60%時(shí)產(chǎn)生最大的壓力反彈幅度;泄放口徑的增大會(huì)使得壓力突降幅度、壓力反彈幅度、壓力突降速率、壓力反彈速率均增大;液相的熱分層影響液體的總能量與泄壓后的能量釋放速率,液體在熱分層條件下的總能量較低,能量的釋放速率較慢,導(dǎo)致壓力反彈值降低。 (4)基于液化氣體儲(chǔ)罐的熱響應(yīng)規(guī)律及熱分層對(duì)爆沸過(guò)程的影響機(jī)理,提出了一種液化氣體儲(chǔ)罐的安全裝置,獲取了國(guó)家發(fā)明專利。該裝置通過(guò)維持熱分層和冷卻氣相壁,降低介質(zhì)的總能量和儲(chǔ)罐破裂失效的概率,從而實(shí)現(xiàn)預(yù)防BLEVE事故的目的。
[Abstract]:Liquefied gas storage tank is the core equipment and main dangerous source in the process of liquefied gas storage and transportation. The thermal invasion of fire will cause the temperature and pressure of the internal medium of the tank to rise and the strength of the tank to decrease. The thermal response of liquefied gas storage tanks and the study of BLEVE, It can provide theoretical basis for accident prevention and control of liquefied gas tank. Scholars at home and abroad have done a lot of research in this field, discussed the thermal response process of liquefied gas tank, and obtained some valuable conclusions. Since this process involves the coupled heat transfer between the tank and its internal medium and the gas-liquid two-phase non-equilibrium thermodynamic mass transfer, the thermal stratification and its elimination mechanism and the mechanism of the BLEVE process have not reached a consistent conclusion, which needs further study. This paper mainly carried out the following research work:. An experimental system for simulating the thermal response of liquefied gases and the BLEVE process is established. The system can control the heating region, heat flux, filling rate, initial temperature and so on. The temperature distribution and the convection and boiling phenomena in the medium can be monitored during the thermal response, and the transient pressure changes during the rapid pressure relief can be recorded. (2) the thermal stratification experiment of liquefied gas was carried out. The formation and development mechanism of thermal stratification was revealed by analyzing the temperature response of the medium under heated conditions and the two-phase flow near the wall. Natural convection driven by single phase buoyancy causes thermal stratification, and nucleate boiling on the wall causes thermal delamination to be eliminated by disturbance in the liquid region. The influence of heating conditions and medium conditions on the development of thermal stratification is studied. When the wall of gas and liquid phase is heated simultaneously, the heat transfer from the gas phase region to the liquid phase region is obtained. The increase of gas heating region will increase the thermal delamination degree of the liquid phase and the maintenance time of the thermal stratification. The physical properties of the medium affect its convection heat transfer and phase transition rate, thus affecting the spatial distribution of the input heat flux, the spreading velocity of the stratified zone, and the gas phase heating rate. The boiling strength and nucleation point distribution of the liquid phase affect the thermal stratification. (3) the BLEVE process of liquefied gas was simulated by the rapid release experiment of medium, and the mechanism of explosion boiling process was studied with numerical simulation method. The results show that the rapid pressure relief leads to the overheating and explosion boiling of liquid. Under the coupling of the two mechanisms of tank pressure relief and medium overheating boiling, the internal pressure of the storage tank presents a response process of "depressurization-boost-pressure depressurization". The maximum pressure rebound is produced when the medium filling rate is 60. The increase of release caliber will increase the amplitude of pressure sudden drop, the range of pressure rebound, the rate of pressure sudden drop, the rate of pressure rebound, the thermal stratification of liquid phase affects the total energy of liquid and the rate of energy release after releasing pressure. Under the condition of thermal stratification, the total energy of the liquid is lower and the energy release rate is slower, which leads to the decrease of the pressure rebound value. 4) based on the thermal response of liquefied gas storage tank and the influence mechanism of thermal stratification on the explosion boiling process, a safety device for liquefied gas storage tank is proposed, and the national invention patent is obtained. The total energy of medium and the probability of tank failure are reduced to prevent BLEVE accident.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE972;TQ086
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尚拓強(qiáng);陳思凝;張東勝;楊劍鋒;陳東梁;劉婭;;沸騰液體擴(kuò)展蒸汽爆炸初期演化過(guò)程的數(shù)值模擬[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
2 王海蓉;馬曉茜;;LNG容器蒸氣膨脹爆炸特性研究[J];低溫工程;2006年05期
3 林文勝,顧安忠,魯雪生;低溫容器的蒸汽爆炸現(xiàn)象初探[J];低溫與特氣;2002年02期
4 劉朝,明向軍,曾丹苓,敖越;液體理論極限過(guò)熱度的確定[J];工程熱物理學(xué)報(bào);1997年03期
5 劉朝,曾丹苓;快速降壓下過(guò)熱液中汽泡的生長(zhǎng)[J];工程熱物理學(xué)報(bào);1998年01期
6 江軍;柯道友;;過(guò)冷沸騰中的局域氣泡和射流的動(dòng)態(tài)行為[J];工程熱物理學(xué)報(bào);2006年S2期
7 俞昌銘;壓力陡降及容積加熱條件下氣—液兩相系統(tǒng)瞬態(tài)分析[J];工程熱物理學(xué)報(bào);1994年02期
8 俞昌銘,,熊音;一種冷爆炸現(xiàn)象的物理數(shù)學(xué)分析初探[J];工程熱物理學(xué)報(bào);1995年03期
9 弓燕舞,林文勝,顧安忠;分層對(duì)液化石油氣儲(chǔ)罐熱響應(yīng)的影響[J];工業(yè)加熱;2002年05期
10 俞昌銘;單彥廣;肖金生;李格升;童莉葛;;液化氣儲(chǔ)罐受熱引爆機(jī)理分析[J];北京科技大學(xué)學(xué)報(bào);2013年04期
相關(guān)博士學(xué)位論文 前1條
1 王慶慧;壓力容器蒸汽爆炸臨界條件分析及后果仿真[D];東北石油大學(xué);2011年
本文編號(hào):1494146
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1494146.html