水平井分段壓裂完井管柱及配套工具的研究
本文關(guān)鍵詞: 套管固井分段壓裂 力學(xué)分析 設(shè)計(jì) 密封性能 沖蝕損壞 出處:《西南石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:低滲透油氣藏儲(chǔ)量占大港油田總儲(chǔ)量的比重越來越大,在當(dāng)前能源緊張的形勢(shì)下,開發(fā)好低滲透油氣藏十分重要。低孔低滲儲(chǔ)層的開采大都具有能量不足的特點(diǎn),單獨(dú)以水平井提高儲(chǔ)層鉆遇率和增大泄油面積不能實(shí)現(xiàn)經(jīng)濟(jì)高效的開發(fā),需要在完井過程中結(jié)合分段壓裂措施進(jìn)行增產(chǎn)改造。但是水平井分段壓裂是一項(xiàng)世界級(jí)難題,其工藝技術(shù)難點(diǎn)在于分段壓裂工藝方式的選擇以及井下分隔工具與實(shí)際需求存在較大的差距。因此,急需對(duì)分段壓裂完井工具進(jìn)行改進(jìn)設(shè)計(jì)、研發(fā)和配套集成應(yīng)用,為非常規(guī)油藏的勘探開發(fā)提供完井技術(shù)支撐和保障。 本文通過設(shè)計(jì)、理論分析、試驗(yàn)設(shè)計(jì)和計(jì)算相結(jié)合的方法,研究了水平井套管固井分段壓裂工藝技術(shù),國(guó)內(nèi)對(duì)于該工藝技術(shù)的研究尚處于起步階段。研究?jī)?nèi)容主要包括兩大模塊,分別為水平井套管固井分段壓裂管柱的設(shè)計(jì)及力學(xué)分析,以及管柱配套工具的研究。圍繞上述兩個(gè)模塊,主要開展了以下工作: 對(duì)水平井套管固井分段壓裂管柱進(jìn)行了結(jié)構(gòu)設(shè)計(jì)及受力情況進(jìn)行分析。依據(jù)管柱設(shè)計(jì)原則,對(duì)分段壓裂管柱的結(jié)構(gòu)進(jìn)行設(shè)計(jì)。研究了剛性壓裂管柱入井的幾何條件,解決了壓裂管柱配套工具的直徑或者長(zhǎng)度設(shè)計(jì)不合理而卡在造斜段的問題。分析了壓裂管柱下放過程中與井壁的受力情況,給出了壓裂管柱的井口拉力、軸向力及摩阻力的計(jì)算公式,并進(jìn)行了工程實(shí)例的應(yīng)用,確定了下放過程中可能遇到的下放困難點(diǎn)。 對(duì)套管固井分段壓裂管柱的配套工具進(jìn)行了研究,分別給出了各個(gè)配套工具的基本結(jié)構(gòu)、工作原理及技術(shù)參數(shù),并設(shè)計(jì)了工具的可靠性試驗(yàn)方案。建立了滑套球座與憋壓球密封過程的力學(xué)模型。完成了固井滑套通徑尺寸及節(jié)流壓差的計(jì)算。 研究了套管固井滑套密封性能。完成了內(nèi)滑套在極端工況情況下的可靠性分析,確定了最佳材料。建立了球座與憋壓球的非線性接觸力學(xué)模型,分析了不同液壓工況對(duì)球座及憋壓球的等效應(yīng)力及等效應(yīng)變分布規(guī)律的影響,分析了最大應(yīng)力值、最大應(yīng)變值、最大彈性形變值及最大塑性形變值隨液壓的變化規(guī)律。研究了球座錐角對(duì)球座與球密封性能的影響,從而確定滿足壓裂施工要求的最合理的球座錐角角度。 研究了套管固井滑套沖蝕磨損規(guī)律。建立了內(nèi)滑套的流場(chǎng)模型,研究了流體流動(dòng)特性與砂粒的沖蝕速率,分析得出沖蝕損壞的主要原因及關(guān)鍵失效位置。研究了受沖蝕磨損程度與壓裂液排量、出口壓力、含砂量以及砂粒粒徑的關(guān)系。最后,對(duì)沖蝕磨損進(jìn)行了量化計(jì)算,總結(jié)出了沖蝕深度與沖蝕時(shí)間的關(guān)系曲線,計(jì)算得出內(nèi)滑套的安全使用時(shí)間。
[Abstract]:Low permeability reservoir reserves account for the proportion of the total reserves of Dagang oil field more and more, in the current situation of energy shortage. It is very important to develop low permeability reservoirs. The exploitation of low porosity and low permeability reservoirs mostly has the characteristic of insufficient energy. It is not possible to achieve economic and efficient development by using horizontal wells alone to improve the drilling rate of reservoirs and increase the oil discharge area. It is necessary to combine fracturing with fracturing to increase production during completion, but the fracturing in horizontal wells is a world-class problem. The technical difficulty lies in the selection of fracturing technology and the gap between the downhole separation tool and the actual demand. Therefore, it is urgent to improve the design of the segmented fracturing completion tool. R & D and supporting integrated application provide well completion technology support and guarantee for exploration and development of unconventional reservoirs. Through the combination of design, theoretical analysis, test design and calculation, the fracturing technology of casing cementing in horizontal wells is studied in this paper. The domestic research on this technology is still in its infancy. The research mainly includes two modules, namely, the design and mechanical analysis of casing cementing fracturing string in horizontal wells. Around the above two modules, mainly carried out the following work: The structural design and stress analysis of casing fracturing string in horizontal well are carried out, according to the principle of pipe string design. The structure of the fracturing string is designed and the geometric conditions of the rigid fracturing string entering the well are studied. This paper solves the problem that the diameter or length of the matching tool for fracturing string is not reasonable and is stuck in the diagonal section. The stress situation of the fracturing string and the wellbore during the down-running process is analyzed, and the well head tension of the fracturing string is given. The formulas of axial force and frictional resistance are calculated, and the application of engineering examples is carried out to determine the difficult points that may be encountered in the process of transfer. The matching tools of casing cementing fracturing string are studied, and the basic structure, working principle and technical parameters of each supporting tool are given. The reliability test scheme of the tool is designed, the mechanical model of the sealing process between the slider ball seat and the pressurized ball is established, and the calculation of the diameter dimension and the throttling pressure difference of the cementing slider sleeve is completed. The sealing performance of casing cementing sliding sleeve is studied. The reliability analysis of inner sliding sleeve under extreme conditions is completed and the best material is determined. The nonlinear contact mechanics model of ball base and pressure ball is established. The influence of different hydraulic conditions on the distribution of equivalent stress and strain of ball pedestal and pressure ball is analyzed, and the maximum stress and strain value are analyzed. The influence of cone angle of ball base on the performance of ball pedestal and ball seal is studied, so as to determine the most reasonable angle of cone angle of ball base to meet the requirements of fracturing operation. The erosion and wear law of casing cementing slider sleeve is studied. The flow field model of inner sliding casing is established, and the fluid flow characteristics and erosion rate of sand particles are studied. The main causes and key failure locations of erosion damage are obtained. The relationship between erosion wear degree and fracturing fluid discharge, outlet pressure, sand content and sand particle size is studied. The quantitative calculation of erosion wear was carried out, and the curve of the relationship between erosion depth and erosion time was summarized, and the safe operation time of inner sliding sleeve was calculated.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE357
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董剛,張九淵;固體粒子沖蝕磨損研究進(jìn)展[J];材料科學(xué)與工程學(xué)報(bào);2003年02期
2 仝健民,李明義;材料的沖擊磨料磨損耐磨性及其疲勞磨損機(jī)制[J];機(jī)械工程材料;1993年03期
3 張少峰;曹會(huì)敏;劉燕;高聰;;彎管中液固兩相流及壁面碰撞磨損的數(shù)值模擬[J];河北工業(yè)大學(xué)學(xué)報(bào);2008年03期
4 許蕾;羅會(huì)信;;基于ANSYS ICEM CFD和CFX數(shù)值仿真技術(shù)[J];機(jī)械工程師;2008年12期
5 茍阿莉;徐勝?gòu)?qiáng);方軍偉;段騰龍;;水平井水力噴射分層壓裂工藝技術(shù)研究及現(xiàn)場(chǎng)實(shí)踐[J];內(nèi)蒙古石油化工;2008年11期
6 李麗丹;李聲;;基于CFX和Workbench的數(shù)值仿真技術(shù)[J];中國(guó)測(cè)試;2010年05期
7 柴國(guó)興;劉松;王慧莉;李繼志;;新型水平井不動(dòng)管柱封隔器分段壓裂技術(shù)[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
8 趙喜民;張林;陳建剛;王新建;;可撈式橋塞在水平井分段隔離壓裂上的應(yīng)用[J];石油機(jī)械;2008年02期
9 曲海;李根生;黃中偉;李憲文;趙文;卜向前;王曉東;;水力噴射分段壓裂密封機(jī)理[J];石油學(xué)報(bào);2011年03期
10 王永昌,姜必武,馬延風(fēng),郭健康,王連軍;安塞油田低滲透砂巖油藏重復(fù)壓裂技術(shù)研究[J];石油鉆采工藝;2005年05期
相關(guān)博士學(xué)位論文 前1條
1 楊智光;固井封固理論與應(yīng)用技術(shù)[D];大慶石油學(xué)院;2007年
,本文編號(hào):1487041
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1487041.html