鉆柱自轉(zhuǎn)公轉(zhuǎn)和徑向運(yùn)動(dòng)誘發(fā)牛頓流體流動(dòng)的流場(chǎng)分析
本文關(guān)鍵詞: 鉆柱 自轉(zhuǎn) 公轉(zhuǎn) 徑向運(yùn)動(dòng) 雙極坐標(biāo) 有限體積法 出處:《燕山大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:目前,在石油鉆井過(guò)程中,鉆柱是必不可少的井下鉆井工具。其長(zhǎng)期浸泡在充滿鉆井液的井眼當(dāng)中,靠轉(zhuǎn)盤(pán)的帶動(dòng)旋轉(zhuǎn)向下鉆進(jìn),在這一過(guò)程當(dāng)中,鉆柱不僅會(huì)繞自身的軸線做自轉(zhuǎn)運(yùn)動(dòng),還有可能繞井眼軸線做公轉(zhuǎn)運(yùn)動(dòng)并產(chǎn)生徑向運(yùn)動(dòng)。研究鉆柱運(yùn)動(dòng)誘發(fā)牛頓流體流動(dòng)的流動(dòng)規(guī)律具有重要作用,能夠有效減少由于鉆柱渦動(dòng)和屈曲而導(dǎo)致的鉆井事故的出現(xiàn),從而減少經(jīng)濟(jì)損失。目前國(guó)內(nèi)外學(xué)者對(duì)偏心環(huán)空流已經(jīng)進(jìn)行了許多研究,并取得了一定的成果,本課題將在前人的研究成果之上,首次將鉆柱徑向運(yùn)動(dòng)考慮在內(nèi),建立鉆柱自轉(zhuǎn)、公轉(zhuǎn)和徑向運(yùn)動(dòng)誘發(fā)牛頓流體流動(dòng)的數(shù)學(xué)模型,并進(jìn)行求解,以期更好的研究井筒中鉆井液的流動(dòng)規(guī)律,為鉆柱受力分析提供依據(jù),從而減少鉆井事故的出現(xiàn)。本文首先分析了目前國(guó)內(nèi)外學(xué)者在偏心環(huán)空流研究中存在的問(wèn)題和不足之處,并針對(duì)這些問(wèn)題和不足提出了本文的研究?jī)?nèi)容以及研究方法;經(jīng)過(guò)研究分析,以慣性坐標(biāo)系下的連續(xù)性方程和運(yùn)動(dòng)方程為基礎(chǔ),建立了非慣性坐標(biāo)系下的控制方程;通過(guò)基本假設(shè),建立了鉆柱自轉(zhuǎn)、公轉(zhuǎn)和徑向運(yùn)動(dòng)誘發(fā)牛頓流體流動(dòng)的數(shù)學(xué)模型;采用雙極坐標(biāo),將偏心環(huán)空區(qū)域轉(zhuǎn)化為了矩形區(qū)域;采用適用性較好,且具有明顯優(yōu)勢(shì)的有限體積法對(duì)建立的數(shù)學(xué)模型進(jìn)行了離散,得到了離散后的數(shù)學(xué)方程;采用MATLAB軟件,對(duì)鉆柱自轉(zhuǎn)運(yùn)動(dòng)誘發(fā)牛頓流體流動(dòng)的流場(chǎng)進(jìn)行了分析,求出了軸向速度分布圖和切向速度分布圖,并且繪制了不同偏心距條件下的速度流線圖。采用FLUENT軟件對(duì)相同工況下的流場(chǎng)進(jìn)行了分析,繪制了不同偏心距條件下的速度流線圖,并將兩種方法繪制的流線圖進(jìn)行了對(duì)比,經(jīng)過(guò)對(duì)比發(fā)現(xiàn)這兩種方法計(jì)算結(jié)果相似,同時(shí)都發(fā)現(xiàn)只有偏心距達(dá)到一定的距離要求時(shí)才會(huì)有二次流出現(xiàn)。
[Abstract]:At present, in the process of oil drilling, drill string is an essential downhole drilling tool. The drill string can not only rotate around its axis, but also rotate around the hole axis and produce radial motion. It is very important to study the flow law of Newtonian fluid induced by drill string movement. It can effectively reduce the occurrence of drilling accidents caused by vortex and buckling of drill string and thus reduce economic losses. At present, many researches have been done on eccentric annular annulus flow at home and abroad, and some achievements have been made. In this paper, based on the previous research results, the radial movement of drill string is taken into account for the first time, and the mathematical model of Newtonian fluid flow induced by rotation, rotation and radial motion of drill string is established and solved for the first time. In order to better study the flow rule of drilling fluid in wellbore and provide the basis for the analysis of drill string force. In order to reduce the occurrence of drilling accidents. Firstly, this paper analyzes the existing problems and deficiencies of domestic and foreign scholars in the research of eccentric annulus flow. In view of these problems and shortcomings, this paper puts forward the research content and research methods; Based on the continuity equation and motion equation in inertial coordinate system, the control equation in non-inertial coordinate system is established. The mathematical models of Newtonian fluid flow induced by rotation rotation and radial motion of drill string are established by the basic assumptions. The eccentric annulus region is transformed into a rectangular region by using bipolar coordinates. The established mathematical model is discretized by using the finite volume method, which has good applicability and obvious advantages, and the mathematical equations after discretization are obtained. The flow field of Newtonian fluid flow induced by rotary movement of drill string is analyzed by MATLAB software, and the axial velocity distribution diagram and tangential velocity distribution diagram are obtained. The velocity streamline diagram under different eccentricity is drawn. The flow field under the same working condition is analyzed by FLUENT software, and the velocity streamline diagram under different eccentricity is drawn. The flow diagram drawn by the two methods is compared. The results of the two methods are similar and it is found that only when the eccentricity reaches a certain distance can there be secondary flow.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE921.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 楊樹(shù)人,張景富,陳家瑯,申家年;冪律流體在偏心環(huán)空中流動(dòng)的數(shù)值計(jì)算方法[J];大慶石油學(xué)院學(xué)報(bào);1996年02期
2 ;PRESSURE DISTRIBUTION ON THE WALL OF THE INNER CYLINDER RECIPROCATING AXIALLY TO THE UNSTEADY FLOW OF VISCOELASTIC FLUID IN ECCENTRIC ANNULUS[J];Journal of Hydrodynamics(Ser.B);2006年05期
3 劉希圣,崔海清;冪律流體在傾斜旋轉(zhuǎn)內(nèi)管的偏心環(huán)空中層流流動(dòng)近似解法[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年06期
4 崔海清;裴曉含;蔡萌;;冪律流體在內(nèi)管做行星運(yùn)動(dòng)的環(huán)空中流動(dòng)的二次流[J];石油學(xué)報(bào);2007年01期
5 徐建平,陳欽雷,霍子倫;非牛頓流體通過(guò)偏心環(huán)空的速度分布[J];油氣井測(cè)試;2000年03期
6 劉慈群,,黃軍旗;環(huán)空套管內(nèi)粘彈性流體[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);1996年01期
相關(guān)博士學(xué)位論文 前1條
1 蔡萌;粘彈性流體在內(nèi)管做行星運(yùn)動(dòng)的環(huán)空中流動(dòng)的數(shù)值計(jì)算[D];大慶石油學(xué)院;2009年
相關(guān)碩士學(xué)位論文 前2條
1 蔡萌;冪律流體在內(nèi)管做行星運(yùn)動(dòng)的環(huán)空中流動(dòng)的二次流[D];大慶石油學(xué)院;2005年
2 劉洪劍;內(nèi)管做軸向往復(fù)運(yùn)動(dòng)的偏心環(huán)空中流動(dòng)的冪律流體對(duì)內(nèi)管的法向力[D];東北石油大學(xué);2014年
本文編號(hào):1451985
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1451985.html