天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 石油論文 >

應(yīng)用數(shù)字巖心技術(shù)模擬高溫高壓氣水滲流

發(fā)布時(shí)間:2018-01-19 22:53

  本文關(guān)鍵詞: 數(shù)字巖心 高溫高壓 氣水相滲 水驅(qū)氣 出處:《西南石油大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:氣水相滲是氣田開(kāi)發(fā)中的重要基礎(chǔ)數(shù)據(jù),然而模擬地層高溫高壓真實(shí)氣水相滲測(cè)試往往耗時(shí)長(zhǎng)、費(fèi)用高、操作難度大,實(shí)驗(yàn)成功率低,因此目前的氣水相滲一般是依據(jù)標(biāo)準(zhǔn)SY/T5345-2007《巖石中兩相流體相對(duì)滲透率測(cè)定方法》在實(shí)驗(yàn)室條件下應(yīng)用壓縮空氣或氮?dú)夂偷貙铀?注入水)或標(biāo)準(zhǔn)鹽水采用穩(wěn)態(tài)法或非穩(wěn)態(tài)法巖心驅(qū)替實(shí)驗(yàn)獲得,未考慮地層高溫高壓的影響,這與實(shí)際地層條件下的滲流條件存在較大的差異。近幾年來(lái),數(shù)字巖心技術(shù)在石油行業(yè)的應(yīng)用越來(lái)越多,相比于傳統(tǒng)的實(shí)驗(yàn)室?guī)r心驅(qū)替實(shí)驗(yàn)而言,數(shù)字巖心技術(shù)具有模擬耗時(shí)少,獲得數(shù)據(jù)便捷,同一塊巖心可在不同溫度不同壓力下同步進(jìn)行模擬,并重復(fù)模擬等等優(yōu)點(diǎn),因此利用數(shù)字巖心技術(shù)模擬獲得地層高溫高壓真實(shí)氣水相滲不失為一種有效的方法。然而就目前的報(bào)道來(lái)看,還未有人將傳統(tǒng)的數(shù)字巖心模擬技術(shù)應(yīng)用于模擬高溫高壓氣水相滲,已有的研究?jī)H限于常規(guī)氣水相滲的模擬。由于儲(chǔ)層巖石深埋在地下,普通的模擬環(huán)境不符合現(xiàn)場(chǎng)的工程實(shí)際性,且目前還沒(méi)有一套把建造三維模型和滲流模擬結(jié)合起來(lái)的具體方法。本文正是基于以上考慮,自主構(gòu)建了一整套建立數(shù)字巖心、模擬高溫高壓氣水滲流的方法流程,并結(jié)合實(shí)驗(yàn)室數(shù)據(jù)對(duì)比,論證了使用數(shù)字巖心模擬代替實(shí)驗(yàn)室實(shí)際測(cè)試的可行性。將氣相質(zhì)量方程和水相質(zhì)量方程推導(dǎo)為一個(gè)矩陣方程,完美融合在有限元計(jì)算軟件COMSOL中,考慮高溫高壓條件對(duì)流體物性參數(shù)的影響,從而得到不同的模擬結(jié)果。通過(guò)本文的研究主要得到了以下認(rèn)識(shí):1.利用AVIZO計(jì)算巖石物性參數(shù),得到了與實(shí)際測(cè)試結(jié)果相一致的巖石孔滲數(shù)據(jù),且當(dāng)計(jì)算機(jī)達(dá)不到內(nèi)存需求時(shí),可分段求取絕對(duì)滲透率后再進(jìn)行算術(shù)平均;2.對(duì)數(shù)字巖心進(jìn)行修復(fù)處理的過(guò)程,需要大量時(shí)間并結(jié)合導(dǎo)入COMSOL的反饋信息后進(jìn)行人工修復(fù),否者很難導(dǎo)入成功;3.無(wú)論從實(shí)驗(yàn)測(cè)試或者是模擬計(jì)算所得到的常溫常壓與高溫高壓條件下的氣水相滲結(jié)果均存在差異:等滲點(diǎn)處含水飽和度在高溫高壓條件下更小,其相對(duì)滲透率更低,相比于常溫常壓條件,高溫高壓條件下的兩相共滲區(qū)域更狹窄;4.兩種不同條件下氣水相滲的模擬結(jié)果與實(shí)驗(yàn)室測(cè)試結(jié)果基本一致:等滲點(diǎn)的位置基本一致,束縛水飽和度相同,束縛水飽和度下的氣相相對(duì)滲透率相同,殘余氣飽和度相同;5.建立了一套可行的高溫高壓模擬操作方法,只需要巖石的孔滲參數(shù),流體在特定溫度壓力下的物性參數(shù)和殘余水、殘余氣飽和度等基礎(chǔ)數(shù)據(jù),再設(shè)定合適的邊界條件,就可計(jì)算出該巖樣的相滲曲線(xiàn)。
[Abstract]:Gas-water phase permeability is an important basic data in gas field development. However, the real gas-water phase permeability test of simulated formation at high temperature and pressure often takes a long time, high cost, difficult to operate, and low success rate of experiment. Therefore, the current gas-water phase permeability is generally based on the standard SY/T5345-2007 < method for determining the relative permeability of two-phase fluids in rocks ". Under laboratory conditions, compressed air or nitrogen gas and formation water (. Injection water) or standard brine is obtained by core displacement experiment by steady or unsteady method. The influence of high temperature and high pressure is not taken into account, which is different from the actual seepage condition. In recent years, digital core technology has been applied more and more in petroleum industry. Compared with the traditional laboratory core displacement experiments, digital core technology has the advantages of less simulation time, easy to obtain data, the same core can be simultaneously simulated at different temperatures and different pressures. And repeated simulation and other advantages, so the use of digital core technology to simulate the formation of high-temperature and high-pressure real gas-water infiltration is an effective method. However, from the current report. The traditional digital core simulation technology has not been applied to simulate the high temperature and high pressure gas-water phase permeability, but the existing research is limited to the conventional gas-water permeability simulation, because the reservoir rock is buried deep underground. The common simulation environment does not accord with the field engineering reality, and there is no concrete method to combine the construction of three-dimensional model and seepage simulation. This paper is based on the above considerations. A whole set of methods to establish digital core and simulate gas-water seepage at high temperature and high pressure were constructed independently and compared with laboratory data. The feasibility of using digital core simulation to replace the actual laboratory test is demonstrated. The gas phase mass equation and the water phase mass equation are derived into a matrix equation, which is perfectly integrated into the finite element calculation software COMSOL. Considering the influence of high temperature and high pressure on the physical parameters of the fluid, different simulation results are obtained. Through the research of this paper, the following understandings are obtained: 1. Using AVIZO to calculate the physical parameters of rock. The rock porosity and permeability data are obtained in accordance with the actual test results, and when the computer fails to meet the memory requirements, the absolute permeability can be calculated in stages and then the arithmetic average can be carried out. 2. The process of repairing digital core needs a lot of time and the feedback information of COMSOL to carry on manual repair, which is difficult to import successfully; 3. The results of gas-water phase infiltration under normal temperature and high pressure are different from those obtained from the experimental test or simulation calculation: the water saturation at the equiosmotic point is smaller under the condition of high temperature and high pressure. Its relative permeability is lower, compared with the normal temperature and atmospheric pressure, the two-phase co-permeation area is narrower under the high temperature and high pressure conditions. 4. The simulation results of gas-water phase infiltration under two different conditions are basically consistent with the experimental results: the position of the equiosmotic point is basically the same, the irreducible water saturation is the same, and the gas phase relative permeability under the irreducible water saturation is the same. The residual gas saturation is the same; 5. A set of feasible operation method of high temperature and high pressure simulation is established, which only needs the basic data such as pore and permeability parameters of rock, physical parameters of fluid under specific temperature and pressure, residual water, residual gas saturation and so on. By setting appropriate boundary conditions, the permeability curve of the rock sample can be calculated.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TE31

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉如利;;溶氣水中溶解鹽對(duì)溶氣水質(zhì)量的影響[J];電鍍與環(huán)保;1986年01期

2 周克明;邱恒熙;;氣水兩相流動(dòng)規(guī)律實(shí)驗(yàn)分析和化學(xué)排水方法探討[J];天然氣工業(yè);1993年04期

3 柴小穎;談志偉;李興彥;秦濤;范建芳;;澀北氣田氣水關(guān)系及分布特征研究[J];青海石油;2011年03期

4 李曉平,趙必榮;氣水兩相流井產(chǎn)能分析方法研究[J];油氣井測(cè)試;2001年04期

5 華銳湘;賈英蘭;李清;許文平;秦彩虹;;澀北氣田氣水分布及氣水運(yùn)動(dòng)規(guī)律分析[J];天然氣工業(yè);2009年07期

6 呂新東;馮文光;楊宇;李強(qiáng);;多縫洞系統(tǒng)氣水模式動(dòng)態(tài)解釋的數(shù)值模擬論證[J];石油地質(zhì)與工程;2009年04期

7 路菁;吳錫令;黃志潔;王界益;彭原平;何峰江;;水平井氣水兩相流型的測(cè)井識(shí)別實(shí)驗(yàn)研究[J];測(cè)井技術(shù);2010年02期

8 馬超群;黃磊;羅璇;范虎;萬(wàn)單梁;;氣水交替驅(qū)CO_2注入界限研究[J];油氣地球物理;2012年02期

9 吳永斌;;蜀南地區(qū)S井氣水產(chǎn)出特征及儲(chǔ)量變化研究[J];中國(guó)西部科技;2011年31期

10 李曉平,胡勇;氣水同產(chǎn)井瞬態(tài)流入動(dòng)態(tài)關(guān)系曲線(xiàn)探討[J];天然氣工業(yè);2001年03期

相關(guān)會(huì)議論文 前2條

1 蘇益明;;空冷島直冷氣水混合清洗裝置的設(shè)計(jì)[A];空冷機(jī)組專(zhuān)業(yè)技術(shù)系統(tǒng)學(xué)習(xí)班培訓(xùn)資料[C];2013年

2 白自龍;王小佳;高福志;孟嘉益;岳君;;蘇48區(qū)塊氣水分布規(guī)律研究[A];低碳經(jīng)濟(jì)促進(jìn)石化產(chǎn)業(yè)科技創(chuàng)新與發(fā)展——第九屆寧夏青年科學(xué)家論壇石化專(zhuān)題論壇論文集[C];2013年

相關(guān)重要報(bào)紙文章 前6條

1 石文;別用生氣“懲罰”自己[N];山西科技報(bào);2002年

2 錢(qián)進(jìn);生氣是健康大敵[N];大眾衛(wèi)生報(bào);2007年

3 本報(bào)記者 馬艷玲;調(diào)節(jié)情緒少“受傷”[N];醫(yī)藥養(yǎng)生保健報(bào);2005年

4 王潔;莫拿生氣“懲罰”自己[N];大眾衛(wèi)生報(bào);2007年

5 欒世強(qiáng);心中有氣就發(fā)泄出來(lái)[N];解放軍報(bào);2011年

6 國(guó)土資源部地質(zhì)環(huán)境司 姜建軍;當(dāng)今人類(lèi)飲水的基礎(chǔ)[N];中國(guó)礦業(yè)報(bào);2001年

相關(guān)博士學(xué)位論文 前1條

1 陳萬(wàn)鋼;碳酸鹽巖有水氣藏氣水同采技術(shù)研究[D];成都理工大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 張珊珊;SLG地區(qū)氣水識(shí)別技術(shù)研究[D];成都理工大學(xué);2015年

2 鞏氋飛;子洲氣田清澗地區(qū)山_2段致密砂巖氣藏復(fù)雜氣水關(guān)系研究[D];成都理工大學(xué);2015年

3 胥洋;S低滲油藏CO_2氣水交替驅(qū)實(shí)驗(yàn)研究[D];西南石油大學(xué);2016年

4 魏博熙;應(yīng)用數(shù)字巖心技術(shù)模擬高溫高壓氣水滲流[D];西南石油大學(xué);2017年

5 金文輝;蘇西48區(qū)盒8段氣水分布規(guī)律[D];成都理工大學(xué);2010年

6 朱志良;蘇里格氣田蘇59井區(qū)上古生界氣水分布規(guī)律研究[D];成都理工大學(xué);2014年

7 呂煈;阿姆河右岸桑南斜坡高精度氣水識(shí)別技術(shù)研究[D];成都理工大學(xué);2014年

8 黃長(zhǎng)兵;蘇里格X區(qū)塊山西組山2~3儲(chǔ)層氣水關(guān)系研究[D];西南石油大學(xué);2013年

9 楊磊;子洲地區(qū)洲3井—榆80井井區(qū)山_2~3段儲(chǔ)層特征與氣水分布關(guān)系[D];成都理工大學(xué);2009年

10 王曉磊;澀北二號(hào)氣田氣層測(cè)井解釋及氣水分布特征研究[D];中國(guó)石油大學(xué)(華東);2013年

,

本文編號(hào):1445819

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1445819.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)88290***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com