裂縫性地層聲波全波列的數(shù)值模擬及時(shí)頻特征研究
本文關(guān)鍵詞:裂縫性地層聲波全波列的數(shù)值模擬及時(shí)頻特征研究 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 陣列聲波測(cè)井 時(shí)頻分析 同步擠壓小波變換 低角度裂縫
【摘要】:聲波全波列測(cè)井的核心是運(yùn)用聲波在巖層中傳播的不同特征,獲得所測(cè)巖層的巖石物理參數(shù),從而判斷地層的巖性以及是否為儲(chǔ)集層等特征。聲波測(cè)井?dāng)?shù)據(jù)的處理解釋方法主要分為時(shí)間域方法和頻率域方法。都是建立在慢度的提取的基礎(chǔ)上,通過各組分波的慢度隨井深的變化曲線來判斷附近地層的性質(zhì)。時(shí)間域的慢度提取方法包括門限法、能量積分法以及慢度-時(shí)間相關(guān)法等,是從信號(hào)時(shí)間域上入手。頻率域的慢度提取方法是對(duì)聲波全波列信號(hào)進(jìn)行傅里葉變換,得到其每個(gè)組分波的頻譜及頻散曲線,包括頻譜相位分析法以及Prony方法等。聲波信號(hào)中包含物理量有:時(shí)間、頻率和能量。慢度的提取忽略了信號(hào)的頻譜特征,雖然聲波測(cè)井信號(hào)的頻譜信息能夠通過傅里葉變換方法求出,但是其忽略了時(shí)間域上的信息。時(shí)頻分析方法的優(yōu)點(diǎn)在于既有頻率域信息又有時(shí)間域信息,其將聲波信號(hào)的基本物理量時(shí)間、頻率和能量在時(shí)間-頻率坐標(biāo)軸上表現(xiàn)出來。針對(duì)聲波全波列信號(hào)的特征,因?yàn)樵谙嗤瑫r(shí)間處可能有多個(gè)組分波的頻率響應(yīng),并且時(shí)間和頻率較接近,所以利用單一的時(shí)頻分析方法處理效果并不理想。本文創(chuàng)新應(yīng)用希爾伯特-黃變換(Hilbert-Huang變換)中的經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition)即EMD分解聯(lián)合同步擠壓小波變換(Synchrosqueezing Transform)即SST變換,通過對(duì)不同EMD篩選方法進(jìn)行編程實(shí)現(xiàn),找到一種適合陣列聲波測(cè)井信號(hào)的篩選方法,將分解得到的固有模態(tài)函數(shù)(Intrinsic Mode Function)即每個(gè)IMF做SST,旨在得到個(gè)各組分波的時(shí)頻特征,進(jìn)而對(duì)不同裂縫性儲(chǔ)集地層聲波信號(hào)的時(shí)頻特征進(jìn)行研究。本文研究?jī)?nèi)容包括:第一,應(yīng)用希爾伯特變換(HHT)中的經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)聯(lián)合同步擠壓小波變換(SST)方法,首先針對(duì)不同EMD篩選方法進(jìn)行編程實(shí)現(xiàn),選取對(duì)陣列聲波信號(hào)頻率篩選效果較好的方法,對(duì)陣列聲波信號(hào)進(jìn)行分解,然后對(duì)每個(gè)固有模態(tài)函數(shù)做同步擠壓小波變換,針對(duì)每個(gè)IMF得到的時(shí)頻圖,區(qū)分陣列聲波全波列信號(hào)中個(gè)各組分波成分。并針對(duì)井段處理提出了時(shí)頻分布的時(shí)間邊緣和頻率邊緣特征,進(jìn)而得到時(shí)頻特征隨深度變化規(guī)律,進(jìn)而對(duì)裂縫及油水層時(shí)頻特征進(jìn)行評(píng)價(jià)。第二,應(yīng)用有限差分法,使用交錯(cuò)網(wǎng)格方法,根據(jù)井孔波動(dòng)方程推導(dǎo)了在柱坐標(biāo)系下的速度—應(yīng)力有限差分公式,選取了合適的吸收邊界及聲源函數(shù)進(jìn)行編程,模擬了井外為均勻介質(zhì)的硬地層及軟地層、含裂縫地層以及裂縫中含有不同流體的地層的聲波全波列的特征,進(jìn)而用第一部分介紹的方法進(jìn)行時(shí)頻分析,從而總結(jié)出數(shù)值模擬的地層中裂縫在含油水時(shí)的聲波時(shí)頻特征。第三,選取不同井孔陣列聲波測(cè)井實(shí)測(cè)數(shù)據(jù),對(duì)數(shù)據(jù)進(jìn)行預(yù)處理后,應(yīng)用第一部分介紹的方法,選取多個(gè)深度段的數(shù)據(jù)進(jìn)行分析處理,得到每個(gè)IMF的時(shí)頻圖以及時(shí)間邊緣和頻率邊緣特征,對(duì)比第二部分得到的時(shí)頻特征,反演地層中裂縫發(fā)育以及裂縫中含流體情況。通過上面的分析,可以得到以下結(jié)論:1.本文應(yīng)用了聯(lián)合時(shí)頻分布方法,應(yīng)用了EMD分解的濾波特性,以及同步擠壓小波變換的高分辨率特性。對(duì)含裂縫的地層的陣列聲波的時(shí)頻特征進(jìn)行了分析。對(duì)EMD的不同篩分方法進(jìn)行了編程實(shí)現(xiàn),發(fā)現(xiàn)應(yīng)用穩(wěn)定性定理的穩(wěn)定點(diǎn)均值篩分方法對(duì)陣列聲波測(cè)井?dāng)?shù)據(jù)的篩分效果最佳。2.陣列聲波信號(hào)的時(shí)頻特征圖中,由于縱波的幅度相對(duì)橫波及斯通利波較低,所以在時(shí)頻圖上無法完全的顯示。本文應(yīng)用了時(shí)間域與頻率域的聯(lián)合縱波提取方法,因?yàn)榭v波的到時(shí)最早,頻率最高的特點(diǎn),對(duì)全波列信號(hào)在頻率上進(jìn)行高通濾波可以提取縱波;在時(shí)間域上,由于新的組分波首波與前一組分波的相位具有不連續(xù)性,對(duì)信號(hào)進(jìn)行相位求導(dǎo),能夠?qū)⒉贿B續(xù)的點(diǎn)凸現(xiàn)出來,同樣在瞬時(shí)頻率圖中為一個(gè)跳變點(diǎn),據(jù)此可以在時(shí)間域區(qū)分各個(gè)組分波。3.應(yīng)用有限差分法可以有效的模擬均勻地層的情況。在模擬均勻硬地層時(shí)發(fā)現(xiàn),本文的縱波提取方法可以有效的得到縱波的時(shí)頻特征,應(yīng)用EMD分解所得到的IMF2、IMF3中可以得到斯通利波的時(shí)頻特征。這里引用了時(shí)間邊緣以及頻率邊緣方法,可以對(duì)不同源距以及不同深度的數(shù)據(jù)進(jìn)行分析。硬地層的時(shí)間邊緣圖可以看到隨著源距的變化,斯通利波的主峰出現(xiàn)的時(shí)間呈正相關(guān)直線的增加;而頻率邊緣圖中由于偽瑞利波的影響,頻率邊緣圖表現(xiàn)的不規(guī)律。針對(duì)軟地層的情況:本文設(shè)置了不同的參數(shù),發(fā)現(xiàn)在相同的源的情況下,隨著縱波在地層中的傳播速度的變化,縱波的頻率有所變化,縱波速度越大,其頻率越小。分析緣由,可能是因?yàn)榭v波速度越大時(shí),到達(dá)接收器的時(shí)間越短,所以震源激發(fā)的縱波的頻率就越接近震源的主頻,所以縱波速度越大,對(duì)應(yīng)的頻率有所降低。4.應(yīng)用有限差分法模擬了井外均勻地層在含有一條水平裂縫時(shí)的情況。分別對(duì)裂縫中的流體特征進(jìn)行了不同參數(shù)的設(shè)置。發(fā)現(xiàn)裂縫內(nèi)流體設(shè)置為水時(shí),聲波在穿過裂縫后,其各個(gè)組分波的到時(shí)均有延后,且幅度有大幅度降低。對(duì)縱波進(jìn)行了提取,發(fā)現(xiàn)縱波在穿過裂縫后,其頻率稍有減小,而頻率幅度大大降低;當(dāng)裂縫內(nèi)流體設(shè)置為油時(shí),聲波在穿過裂縫后,各個(gè)組分波有同樣的到時(shí)延后特征,縱波在經(jīng)過含油的裂縫后,其主頻表現(xiàn)了明顯的降低。5.選取了遼河油田東部凹陷地區(qū)的實(shí)際測(cè)井?dāng)?shù)據(jù),選取了既含有低角度裂縫又為油層或水層的同巖性的數(shù)據(jù)進(jìn)行分析,主要針對(duì)縱波的時(shí)頻特征,研究發(fā)現(xiàn):相對(duì)致密玄武巖,含水層的玄武巖與含油層的玄武巖的縱波的時(shí)頻特征為,縱波的波至相對(duì)延后,縱波的頻率在油層時(shí)衰減的較多,而在水層時(shí)相對(duì)衰減程度較小。6.選取了遼河油田東部凹陷地區(qū)的實(shí)際測(cè)井?dāng)?shù)據(jù),應(yīng)用EMD分解與同步擠壓小波變換對(duì)除縱波以外的組分波在致密地層以及含油水層的時(shí)頻特征情況進(jìn)行了分析,發(fā)現(xiàn)聲波經(jīng)過水層時(shí)橫波衰減嚴(yán)重,高頻波的頻率幅度有所衰減,斯通利波的幅度也有較大的衰減,低頻斯通利波頻率的幅度的衰減較小;聲波在經(jīng)過油層時(shí)聲波的大部分能量都集中在了橫波以及偽瑞利波成分中,橫波的到時(shí)延后,高頻成分的幅度較高,斯通利波衰減非常嚴(yán)重。7.最后對(duì)反射斯通利波進(jìn)行了研究,在模擬的均勻地層在含有一條水平裂縫時(shí)的情況,因?yàn)镮MF3分量中包含了斯通利波的主要成分,所以對(duì)IMF3分量進(jìn)行提取,從時(shí)間邊緣圖上可以很明顯的看到反射斯通利波的存在,即時(shí)間邊緣圖中倒著的“V”字形波紋。對(duì)1m的源距單獨(dú)分析,可以在時(shí)頻圖中準(zhǔn)確的看到反射斯通利波的波峰以及頻率的大小。反射斯通利波可以用于:其與直達(dá)的斯通利波之間的距離可以判斷裂縫的發(fā)育位置;根據(jù)反射斯通利波的反射的能量可以來判斷裂縫的大致寬度,反射能量越大,裂縫寬度越大。
[Abstract]:The core of full wave acoustic logging is different characteristics by using the acoustic wave propagation in rock, the rock physical parameters measured by strata, lithology and to determine whether the layer features such as reservoir. The method of processing and interpretation of acoustic logging data is divided into time domain method and frequency domain method are based on the extraction. The slowness, through each component wave slowness with well depth curve to determine the nature of the formation near. The slowness extraction method in time domain including threshold method, energy integral method and slowness time correlation method, starting from the signal time domain. The slowness extraction method in frequency domain is the Fourier transform of the full wave signal, and the frequency spectrum of each component of the wave dispersion curves, including phase spectrum analysis method and Prony method. The acoustic signal contains physical quantity: time, frequency and energy. The extraction slowness ignores the spectral characteristics of the signal, while the spectrum information of acoustic logging signal can be obtained by Fourier transform method, but it ignores the time domain information. The time-frequency analysis method has the advantages of frequency domain information and time domain information, the basic physical quantity time of acoustic signals. The frequency and energy reflected in the time - frequency axis. According to the characteristics of full wave acoustic signals at the same time, because there may be multiple component wave frequency response, and the time and frequency are similar, so the use of a single time frequency analysis method of treatment effect is not ideal. The innovation of the application of Hilbert Huang transform (Hilbert-Huang transform) in empirical mode decomposition (Empirical Mode Decomposition) EMD decomposition combined with wavelet transform (Synchrosqueezing Transform) extrusion SST transform, according to the different EMD screening method of programming, to find a suitable array acoustic logging signal screening method, the decomposed intrinsic mode function (Intrinsic Mode Function) that each IMF do SST, to get the time-frequency characteristics of a wave components, and then set on time frequency characteristics of acoustic signals of different strata of fractured reservoirs the content of this paper includes: first, the application of Hilbert transform (HHT) in the empirical mode decomposition (EMD) combined with synchronous extrusion wavelet transform (SST) method, according to the different screening methods of EMD programming, selection method of better screening of array acoustic signal frequency decomposition of array acoustic signal, and then each the intrinsic mode function as synchronous extrusion wavelet transform, for each IMF to obtain the time-frequency map, distinguish array full wavetrain acoustic signal components in a wave component. And for wells treatment The time and frequency of edge edge feature of time-frequency distribution, and then get the change rule of time-frequency characteristics with depth, then to evaluate the frequency characteristics of cracks and oil and water. Second, the application of finite difference method, using staggered grid method, according to borehole wave equation in cylindrical coordinates velocity stress Co. the difference formula is derived, selecting the appropriate absorption boundary and the source function programming, simulated well for homogeneous and soft hard rock strata, characteristics of sound with different crack formation and fracture fluid in the formation of full wave, and then the first part introduces the method of time-frequency analysis, thus summed up the numerical simulation of cracks formation in oil containing the acoustic frequency characteristics. Third measured data of different borehole array acoustic logging, after preprocessing the data, the first part introduces the method of application, Select multiple depth data analysis, get each IMF time frequency and time frequency map edge and edge features, the second part compares the obtained time-frequency characteristics, fluid containing fractured strata and fracture inversion. Through the above analysis, can get the following conclusions: 1. the application of frequency distribution method the combined application of EMD decomposition, filtering characteristics, wavelet transform and synchronous extrusion of the high resolution characteristics. The time-frequency characteristics of acoustic array with crack formation are analyzed. Different screening methods of EMD programming, found that the time-frequency feature map screening effect mean screening method of stable point application stability theorem the data of array acoustic logging best.2. array acoustic signal, the P-wave amplitude relative shear wave and Stone wave is relatively low, so in the time-frequency map can not fully display The application of combined wave. Time domain and frequency domain extraction method, because when the first wave characteristics, the highest frequency of the full wave signal by a high pass filter in the frequency wave can be extracted; in the time domain, the new component phase wave with a component with wave the discontinuity of phase derivative signals can be discontinuous point out, also in the instantaneous frequency map for a jump point, which can be used to distinguish the various groups in the time domain wave.3. using finite difference method can effectively simulate the uniform formation conditions. In the simulation of uniform hard formations in this paper, the wave extraction method can get the characteristic frequency of the wave when the effective application of EMD, the decomposition of the IMF2, IMF3 can obtain the time-frequency characteristics of Stone wave. Quoted from the edge of time and frequency for different edge method. The source data of different distance and depth are analyzed. Time edge map can be seen as the source of hard rock from the change of peak Stone wave emergence time was positively related to linear increase; and the frequency in the edge graph due to the effect of pseudo Rayleigh wave frequency, irregular edge map performance. According to the situation: the soft stratum set different parameters, found in the same source, with changes in the formation of the longitudinal wave propagation velocity, wave frequency change, P-wave velocity increasing, the frequency is small. The author analyzed the reasons, probably because of the longitudinal wave velocity is large, the shorter the time to reach the receiver, so the frequency the frequency of the wave source is closer to the source, so the P-wave velocity increasing, the corresponding frequency difference method to simulate the situation of homogeneous formation in wells containing a horizontal crack is reduced using.4. finite difference. On fluid characteristics of different crack parameters. The fluid in the settings for the discovery of cracks when the water waves in through the cracks, the various components of the wave that were delayed, and the amplitude is greatly reduced. The wave was extracted, found that the longitudinal wave in through the cracks, the frequency decreases slightly however, frequency range is greatly reduced; when the fracture fluid is set to oil, sound in through the cracks, each component has the same time delay characteristics of wave, P-wave after oil crack, the frequency showed significantly reduced.5. selected actual logging data in eastern sag of Liaohe Oilfield, is selected with low angle fracture for reservoir or aquifer with lithology data analysis, mainly for time-frequency characteristics, longitudinal study found that relatively dense basalt, longitudinal aquifer basalt and basaltic rocks in the reservoir Time frequency characteristics, longitudinal wave to the relative delay, P-wave frequency attenuation in reservoir is more, while in the water relative attenuation degree smaller.6. we select the actual logging data in eastern sag of Liaohe Oilfield, the application of EMD decomposition and synchronous extrusion wavelet transform on the time-frequency characteristics of longitudinal waves in the wave group in tight formations and oil layer are analyzed, found after water acoustic wave attenuation, frequency and amplitude of high frequency waves are attenuated, Stone wave amplitude has great attenuation, low frequency of Stone wave amplitude attenuation of acoustic waves in small; most of the energy through the reservoir are concentrated in the acoustic wave and pseudo Rayleigh wave component, wave amplitude of high frequency components and delayed, and very serious.7. finally studied the reflection of Stone wave attenuation in the Stone wave, simulation of uniform In a horizontal crack containing strata, because the IMF3 component contains the main components of Stone wave, so the IMF3 component was extracted from the edge of time map can be seen as a reflection of Stone wave, namely the time in the edge graph inverted "V" shaped from a separate analysis of ripples. 1m source, you can see the accurate reflection Stone wave peak and frequency in the time-frequency diagram. The reflection of Stone wave can be used between the direct Stone wave distance can determine the location of cracks and development; to determine roughly the width of cracks according to the reflection of Stone wave energy, reflection energy the greater the crack width is greater.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P631.81
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 宋光明,曾新吾,陳壽如,吳從師;位置條件對(duì)爆破震動(dòng)信號(hào)分析中小波包時(shí)頻特征的影響[J];工程爆破;2002年04期
相關(guān)會(huì)議論文 前2條
1 樊劍;呂超;張輝;;地震波的時(shí)頻特征及其對(duì)結(jié)構(gòu)地震反應(yīng)的影響[A];第17屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅲ冊(cè))[C];2008年
2 夏雅琴;崔曉艷;;次聲異常信號(hào)的時(shí)頻特征分析[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年
相關(guān)碩士學(xué)位論文 前3條
1 左程吉;裂縫性地層聲波全波列的數(shù)值模擬及時(shí)頻特征研究[D];吉林大學(xué);2017年
2 文競(jìng)成;基于時(shí)頻特征參數(shù)的P2P流分類研究[D];電子科技大學(xué);2013年
3 董帥飛;基于MP算法漢語聲母時(shí)頻特征提取的研究[D];江南大學(xué);2013年
,本文編號(hào):1398195
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1398195.html