天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 石油論文 >

管道地理坐標(biāo)測(cè)量系統(tǒng)的誤差校正方法研究

發(fā)布時(shí)間:2018-01-05 08:12

  本文關(guān)鍵詞:管道地理坐標(biāo)測(cè)量系統(tǒng)的誤差校正方法研究 出處:《沈陽(yáng)工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 管道地理坐標(biāo)測(cè)量 慣性誤差 安裝誤差 初始對(duì)準(zhǔn) 非線性濾波 捷聯(lián)慣性導(dǎo)航系統(tǒng) 里程輪


【摘要】:常態(tài)化長(zhǎng)輸油氣管道內(nèi)檢測(cè)是保障管道安全運(yùn)行的重要措施。管道地理坐標(biāo)測(cè)量系統(tǒng)在常態(tài)化管道清潔和缺陷內(nèi)檢測(cè)的同時(shí)完成管道位置測(cè)量和管道地理軌跡的描繪以減少管道缺陷開(kāi)挖維護(hù)成本,監(jiān)測(cè)和評(píng)估管道應(yīng)力、應(yīng)變的變化,對(duì)提高管道維修效率、輔助管道安全預(yù)測(cè)、完善管道運(yùn)維信息具有重要意義。管道地理坐標(biāo)測(cè)量系統(tǒng)的核心是捷聯(lián)慣性導(dǎo)航系統(tǒng),該系統(tǒng)的最大特點(diǎn)是硬件結(jié)構(gòu)簡(jiǎn)單,軟件極為復(fù)雜多樣。由于慣性敏感元件、初始值及安裝等誤差的存在,導(dǎo)致長(zhǎng)航時(shí)復(fù)雜導(dǎo)航計(jì)算過(guò)程中位置等導(dǎo)航參數(shù)誤差隨時(shí)間不斷累積甚至發(fā)散,這些故有的問(wèn)題成為管道地理坐標(biāo)測(cè)量系統(tǒng)工程應(yīng)用的瓶頸。如何消除由于各種因素導(dǎo)致的導(dǎo)航參數(shù)誤差(特別是位置誤差)是管道地理坐標(biāo)測(cè)量系統(tǒng)工程應(yīng)用的關(guān)鍵。因此,論文基于管道地理坐標(biāo)測(cè)量系統(tǒng)平臺(tái),圍繞幾種誤差估計(jì)和補(bǔ)償展開(kāi)相關(guān)研究,主要工作有:(1)論文首先設(shè)計(jì)了一種捷聯(lián)慣性導(dǎo)航系統(tǒng)(SINS—Strapdown Inertial Navigation System)導(dǎo)航解算程序。采用4階龍格庫(kù)塔法求解四元數(shù)完成姿態(tài)更新,提高了數(shù)值解算方法精度和速度。分析了SINS導(dǎo)航系統(tǒng)的噪聲特性,針對(duì)管道焊縫、顛簸等運(yùn)動(dòng)引起的沖激噪聲,采用均值法去除;針對(duì)MEMS敏感元件的隨機(jī)噪聲影響,建立了基于自回歸模型AR(1)的隨機(jī)噪聲模型,采用基于AR(1)的kalman濾波(KF—Kalman Filter)方法去除。小車導(dǎo)航參數(shù)解算的仰俯角、橫滾角及高度對(duì)比實(shí)驗(yàn)結(jié)果表明采用先對(duì)慣性器件采樣信號(hào)進(jìn)行均值法預(yù)處理后,再利用基于AR(1)的KF法對(duì)隨機(jī)誤差進(jìn)行動(dòng)態(tài)補(bǔ)償?shù)臄?shù)據(jù)預(yù)處理效果優(yōu)于單獨(dú)采用均值法及平滑法的去噪效果。(2)SINS在管道內(nèi)檢測(cè)器上的安裝誤差是影響管道地理坐標(biāo)測(cè)量精度的重要因素之一。論文研究了安裝誤差對(duì)導(dǎo)航解算影響的規(guī)律,定義了管道內(nèi)檢測(cè)器與SINS坐標(biāo)軸間的偏角為安裝誤差,依據(jù)剛體轉(zhuǎn)動(dòng)原理,建立了安裝誤差動(dòng)態(tài)傳遞模型;將俯仰和航向安裝誤差角作為狀態(tài)變量,基于管道鋪設(shè)起始段的平直特點(diǎn),構(gòu)建一種基于管道初始段方向約束和里程輪速度約束為觀測(cè)量的SINS/里程儀/管道磁標(biāo)點(diǎn)GPS組合導(dǎo)航系統(tǒng),并采用非線性容積卡爾曼濾波(CKF—Cubature Kalman Filter)對(duì)俯仰角和航向角安裝誤差的估計(jì)和補(bǔ)償。模擬管道內(nèi)有滾轉(zhuǎn)運(yùn)動(dòng)的三組拖車實(shí)驗(yàn)結(jié)果表明所提出方法能夠有效地在線估計(jì)出安裝誤差,安裝誤差估計(jì)精度為0.2′~0.6′,并能夠抑制和改善因俯仰角安裝誤差引起的高度解算誤差及航向角安裝誤差引起的軌跡偏移,經(jīng)安裝誤差修正后的水平地理坐標(biāo)解算精度可達(dá)到1.07e-3°;高度解算精度可達(dá)1.59e-3m。(3)初始對(duì)準(zhǔn)提供管道地理坐標(biāo)測(cè)量系統(tǒng)初始姿態(tài)矩陣,其精度是影響管道地理坐標(biāo)測(cè)量精度的重要因素。論文針對(duì)初始對(duì)準(zhǔn)問(wèn)題,提出了一種新的管道慣性測(cè)量系統(tǒng)動(dòng)態(tài)初始對(duì)準(zhǔn)算法。建立了以管道基準(zhǔn)點(diǎn)為中心的100米區(qū)段的管道方向角、基準(zhǔn)點(diǎn)位置及管道檢測(cè)器運(yùn)行速度為觀測(cè)量的動(dòng)態(tài)初始對(duì)準(zhǔn)觀測(cè)方程。濾波采用模型誤差預(yù)測(cè)濾波(MEP—Model Error Predict)和CKF相結(jié)合算法,利用MEP算法預(yù)測(cè)系統(tǒng)模型誤差以修正CKF狀態(tài)一步預(yù)測(cè)值。該算法能夠?qū)崟r(shí)預(yù)測(cè)模型誤差,降低了CKF系統(tǒng)狀態(tài)維數(shù),減少估計(jì)時(shí)間。小車實(shí)驗(yàn)結(jié)果表明:本文提出的動(dòng)態(tài)初始對(duì)準(zhǔn)算法適用于運(yùn)行環(huán)境復(fù)雜,模型誤差不確定,非線性強(qiáng)的系統(tǒng),對(duì)準(zhǔn)精度可達(dá)0.001°,能夠滿足管道地理坐標(biāo)測(cè)量系統(tǒng)在管道內(nèi)復(fù)雜運(yùn)行環(huán)境下的動(dòng)態(tài)初始對(duì)準(zhǔn)。(4)封閉油氣管道沒(méi)有實(shí)時(shí)GPS信息用來(lái)修正導(dǎo)航參數(shù)誤差,只有里程輪提供的管道地理坐標(biāo)測(cè)量系統(tǒng)在管道內(nèi)的運(yùn)行速度和行程信息。常規(guī)SINS/GPS或SINS/GPS/里程輪組合導(dǎo)航方法不適用于管道地理坐標(biāo)測(cè)量系統(tǒng)。根據(jù)管道地理坐標(biāo)測(cè)量系統(tǒng)的結(jié)構(gòu)及其在管內(nèi)運(yùn)行特征,設(shè)計(jì)了兩級(jí)濾波誤差校正方法。利用前級(jí)正向基于里程輪速度自約束與后級(jí)反向基準(zhǔn)點(diǎn)位置平滑兩級(jí)組合濾波算法實(shí)現(xiàn)管道位置的最優(yōu)估計(jì)。因基準(zhǔn)點(diǎn)位置信息在管道磁標(biāo)點(diǎn)和出口處可獲得,在由起點(diǎn)至磁標(biāo)記點(diǎn)的運(yùn)行過(guò)程中,導(dǎo)航誤差由前級(jí)CKF和KF組合濾波校正,即強(qiáng)非線性部分采用CKF濾波,避免雅克比計(jì)算及線性化誤差,線性部分采用KF,降低CKF濾波維數(shù)。該算法將前級(jí)正向?yàn)V波補(bǔ)償后輸出的位置信息為后級(jí)反向平滑濾波的參考量,將兩級(jí)濾波有機(jī)地結(jié)合在一起。后級(jí)反向?yàn)V波以管道磁標(biāo)記或末端基準(zhǔn)點(diǎn)位置信息為觀測(cè)初始值,進(jìn)行后級(jí)平滑濾波,通過(guò)基準(zhǔn)點(diǎn)校正進(jìn)一步修正了前級(jí)位置參量誤差。通過(guò)拖車實(shí)驗(yàn)軌跡的固定測(cè)量點(diǎn)值與GPS測(cè)量值比對(duì)證明該管道地理坐標(biāo)解算算法的地理坐標(biāo)測(cè)量精度可以達(dá)到10e-3°,能夠滿足長(zhǎng)距離油氣管道內(nèi)檢測(cè)與定位的需求。
[Abstract]:The normalization of long-distance oil and gas pipeline detection is an important measure to ensure the safe operation of the pipeline. The pipeline geographic coordinate measuring system in normal and clean pipeline defect detection simultaneously depicting geographic trajectory position measurement and pipeline pipeline to reduce the defects of the pipeline excavation and maintenance costs, monitoring and assessment of pipeline stress and strain changes, to improve the efficiency of pipeline maintenance, auxiliary pipeline safety prediction, it is important to improve the pipeline operation and maintenance information. The core pipeline geographic coordinate measuring system is a strapdown inertial navigation system, the biggest feature of the system is simple structure of hardware and software is very complicated. Because of the inertia sensitive element, initial value and installation errors, resulting in long endurance complex the navigation location computing process navigation error accumulation and divergence over time, so some of these problems become the pipeline geographic coordinate measurement Bottleneck of system engineering application. How to eliminate the error of navigation parameters caused by various factors (especially position error) is the key application of the measurement system of engineering pipeline geographic coordinate. Therefore, the pipeline geographic coordinate measuring system based on the platform, around several error estimation and compensation research, the main work is: (1) firstly, design a strapdown inertial navigation system (SINS - Strapdown Inertial Navigation System) navigation solution program. By using 4 order Runge Kutta method for solving four quaternion attitude updating, improves the numerical solution method of precision and speed are analyzed. The noise characteristics of SINS navigation system, aiming at the pipeline weld, bumpy motion caused by impulse excited noise removal using average method; according to the random noise of MEMS sensitive components, establish autoregressive model based on AR (1) random noise model, which is based on AR (1) Ka LMAN filter (KF Kalman Filter) method to remove. Car navigation parameters calculation of pitch angle, roll angle and height of comparative experimental results show that the first of the inertial device sampling signal pretreatment means, then based on the AR (1) KF method of dynamic compensation for random error data pretreatment effect better than the average value method and smoothing denoising effect. (2) SINS in the pipeline installation error detector is one of the important factors affecting the accuracy of pipeline geographic coordinate measurement. The paper studies the installation error of the navigation solution of law, defines the angle detector and the SINS axis between the pipe for installation based on the principle of rigid body rotation error, installation error of the dynamic transfer model was established; the pitch and heading misalignment angles as state variables, based on the characteristics of the initial segment of the pipeline laying flat, which is based on the pipeline at the beginning of Gou Jianyi The initial segment direction constraint and mileage wheel speed constraint is SINS/ / odometer measurements of pipeline magnetic punctuation GPS integrated navigation system, and the nonlinear volume filter (CKF - Cubature Kalman Calman Filter) estimation and compensation of pitch angle and yaw angle error. Simulation installation pipe rolling motion of three groups of experimental results show that the trailer the proposed method can effectively estimate the installation error, installation error estimation accuracy is 0.2 '~0.6', and can restrain and improve due to pitch angle error caused by the installation height calculation error and the heading angle deviation caused by installation error, the installation level of geographic coordinates error calculation accuracy can reach 1.07e-3 high degrees; calculation accuracy of up to 1.59e-3m. (3) initial alignment provides pipeline geographic coordinate measuring system of initial attitude matrix, its precision is the pipeline geographic coordinate measurement accuracy effect Factors. The thesis focuses on the initial alignment problem, proposed a new pipeline dynamic initial alignment algorithm of inertial measurement system. Establish the pipeline pipeline with reference point as the center of the 100 meter direction angle, reference point position and speed of pipeline detector for dynamic measurement of the initial alignment error model filtering using the observation equation. Predictive filtering (MEP - Model Error Predict) combined with CKF algorithm, using MEP algorithm to predict the model errors by using the modified CKF one-step prediction value. The algorithm can reduce the error of real-time prediction model, CKF system state dimension, the estimation time is reduced. The experimental results show that the vehicle dynamic initial alignment algorithm is proposed in this paper in complex environment, model error uncertainty, nonlinear system, the alignment accuracy can reach 0.001 degrees, which can meet the pipeline geographic coordinate measuring system in the pipeline complex operation Dynamic initial alignment environment. (4) closed oil and gas pipeline no real-time GPS information is used to correct the error of navigation parameters, only provide the mileage wheel pipeline geographic coordinate measuring system running speed and travel information in the pipeline. The conventional SINS/GPS or SINS/GPS/ mileage wheel navigation method is not suitable for pipeline geographic coordinate measurement system according to the structure. Pipeline geographic coordinate measuring system and its operating characteristics in the tube, correction method for the design of two levels of filtering error. Using the positive mileage wheel speed based on self constraint and reverse the basic point of two smooth combination filtering algorithm to realize optimal pipeline location estimation. For location information available in the pipeline and magnetic punctuation exit, in the operation process by the starting point to the magnetic mark point, navigation error by former CKF and KF combination filter correction, strong nonlinear part by CKF filter, Avoid Jacobian calculation and linearization error, the linear part of the KF, CKF filter. This algorithm reduces the dimension of the location information before the forward filtering output after compensation for the reference level after reverse smoothing filter, two stage filter in combination. After reverse filtering to pipe magnetic marker or end point of reference the location information for the observation of the initial value, after the level of smoothing filter, through reference point correction before further amendments to the level of location parameter error. Comparison proved the geographical coordinates of the pipeline calculation precision of geographical coordinates measurement algorithm can reach 10e-3 degrees by GPS fixed value and measure the value of the trace the trailer, which can meet the detection and location of long distance the oil and gas pipeline needs.

【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE973.6

【相似文獻(xiàn)】

相關(guān)期刊論文 前8條

1 楊進(jìn),李學(xué)范,單光正;簡(jiǎn)易大尺寸坐標(biāo)測(cè)量系統(tǒng)[J];機(jī)械工人.冷加工;1992年02期

2 時(shí)光;張福民;曲興華;;經(jīng)濟(jì)型大尺寸激光自動(dòng)坐標(biāo)測(cè)量系統(tǒng)[J];光學(xué)精密工程;2013年08期

3 ;非接觸式大尺寸三坐標(biāo)測(cè)量系統(tǒng)[J];中國(guó)軍轉(zhuǎn)民;2002年08期

4 曹宇梅,唐建年;非接觸式三坐標(biāo)測(cè)量系統(tǒng)在大尺寸測(cè)量中的應(yīng)用[J];航天工藝;1992年04期

5 ;三坐標(biāo)測(cè)量系統(tǒng)及其應(yīng)用[J];糧油加工與食品機(jī)械;1982年04期

6 魏永合,楊國(guó)昆,郝永平;三坐標(biāo)測(cè)量系統(tǒng)與 CAD 系統(tǒng)接口技術(shù)研究[J];沈陽(yáng)工業(yè)學(xué)院學(xué)報(bào);1997年04期

7 馬驪群;曹鐵澤;王繼虎;孫安斌;;大尺寸坐標(biāo)測(cè)量技術(shù)在大型部件裝配應(yīng)用中的若干問(wèn)題[J];計(jì)測(cè)技術(shù);2013年02期

8 ;[J];;年期

相關(guān)會(huì)議論文 前2條

1 高昕;唐嘉;;紅外立靶坐標(biāo)測(cè)量系統(tǒng)的實(shí)現(xiàn)[A];2006年全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)會(huì)議文集(A 光電系統(tǒng)總體技術(shù)專題)[C];2006年

2 張曉芳;王寶光;蔣誠(chéng)志;賀忠海;;激光光筆式三維坐標(biāo)測(cè)量系統(tǒng)的理論研究[A];中國(guó)儀器儀表學(xué)會(huì)第三屆青年學(xué)術(shù)會(huì)議論文集(上)[C];2001年

相關(guān)博士學(xué)位論文 前5條

1 李暉;管道地理坐標(biāo)測(cè)量系統(tǒng)的誤差校正方法研究[D];沈陽(yáng)工業(yè)大學(xué);2015年

2 周維虎;大尺寸空間坐標(biāo)測(cè)量系統(tǒng)精度理論若干問(wèn)題的研究[D];合肥工業(yè)大學(xué);2000年

3 熊芝;wMPS空間測(cè)量定位網(wǎng)絡(luò)布局優(yōu)化研究[D];天津大學(xué);2012年

4 彭凱;基于光靶標(biāo)的雙相機(jī)三坐標(biāo)測(cè)量系統(tǒng)關(guān)鍵技術(shù)的研究[D];天津大學(xué);2007年

5 秦大輝;便攜式光筆三維坐標(biāo)測(cè)量技術(shù)與系統(tǒng)研究[D];華中科技大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 靖娜;采用光學(xué)測(cè)棒的三目視覺(jué)坐標(biāo)測(cè)量系統(tǒng)的理論研究[D];哈爾濱工業(yè)大學(xué);2006年

2 裴延軍;非正交系在線坐標(biāo)測(cè)量系統(tǒng)的研究[D];汕頭大學(xué);2008年

3 張桂森;五坐標(biāo)測(cè)量系統(tǒng)的研究與開(kāi)發(fā)[D];西安理工大學(xué);2003年

4 涂軍;基于并聯(lián)機(jī)構(gòu)的坐標(biāo)測(cè)量系統(tǒng)研究[D];西南交通大學(xué);2004年

5 高宏;非正交系坐標(biāo)測(cè)量系統(tǒng)的原理、檢定及應(yīng)用研究[D];中國(guó)人民解放軍信息工程大學(xué);2003年

6 張治國(guó);智能光筆式坐標(biāo)測(cè)量系統(tǒng)的驅(qū)動(dòng)設(shè)計(jì)[D];天津大學(xué);2010年

7 李波;CCD技術(shù)在四維坐標(biāo)測(cè)量系統(tǒng)的應(yīng)用研究[D];吉林大學(xué);2007年

8 雷蕾;PSD在輕武器立靶坐標(biāo)測(cè)量系統(tǒng)中的應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2008年

9 汪平平;三坐標(biāo)測(cè)量機(jī)虛擬坐標(biāo)測(cè)量系統(tǒng)研究[D];合肥工業(yè)大學(xué);2003年

10 董英華;光筆式單目視覺(jué)坐標(biāo)測(cè)量系統(tǒng)精度改進(jìn)技術(shù)的研究[D];天津大學(xué);2013年

,

本文編號(hào):1382281

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1382281.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b2546***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com