聚合物驅(qū)油螺旋型靜態(tài)混合器流場(chǎng)仿真與實(shí)驗(yàn)研究
發(fā)布時(shí)間:2018-01-04 22:33
本文關(guān)鍵詞:聚合物驅(qū)油螺旋型靜態(tài)混合器流場(chǎng)仿真與實(shí)驗(yàn)研究 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 靜態(tài)混合器 粘損控制 計(jì)算流體力學(xué)仿真 結(jié)構(gòu)優(yōu)化
【摘要】:目前,三次采油(EOR)技術(shù)已廣泛應(yīng)用于國內(nèi)各主力油田。聚合物注入(簡(jiǎn)稱“注聚”)驅(qū)油方法因其較高的原油采收率已成為三次采油技術(shù)中的主要采油方式。注聚采油技術(shù)利用靜態(tài)混合器(以下簡(jiǎn)稱“靜混”)將聚丙烯酰胺(PAM)母液與水混合后注入井底進(jìn)行驅(qū)油。其驅(qū)油效率主要取決于混合后的溶液粘度,粘度越高,驅(qū)油效率越高。常規(guī)的靜態(tài)混合器由于對(duì)聚合物剪切作用較強(qiáng),造成粘度損失率較高,導(dǎo)致驅(qū)油效率下降,進(jìn)而影響到石油開采產(chǎn)量。本文通過對(duì)靜混混合機(jī)理及PAM溶液粘度理論的分析,明確了影響溶液粘度變化的因素,主要包括靜混結(jié)構(gòu)參數(shù)(單元螺距、單元間距)及結(jié)構(gòu)形式(單元旋向組合)、流體初始流速三方面。在此基礎(chǔ)上通過計(jì)算流體力學(xué)仿真,對(duì)以上三方面進(jìn)行優(yōu)化設(shè)計(jì),得到兩種改進(jìn)后的低剪切靜混,通過實(shí)驗(yàn)證明優(yōu)化有效,粘損得到控制。本文具體內(nèi)容如下:首先分析了靜混的混合機(jī)理,獲得了靜混中流體的壓強(qiáng)分布及流速分布。之后闡述了常用的聚合物溶液粘度計(jì)算模型,結(jié)合PAM溶液自身特性建立起以Carreau方程為基礎(chǔ)的PAM溶液粘度計(jì)算模型,并明確了從靜混結(jié)構(gòu)形式、結(jié)構(gòu)參數(shù)及初始流速三方面入手進(jìn)行粘損控制優(yōu)化設(shè)計(jì)。之后通過計(jì)算流體力學(xué)仿真的手段,利用先進(jìn)的CFX軟件對(duì)常規(guī)靜混和實(shí)驗(yàn)室研發(fā)的新型螺旋型靜混進(jìn)行性能對(duì)比,仿真結(jié)果表明后者性能更優(yōu)。在此基礎(chǔ)上展開螺旋型靜混的優(yōu)化設(shè)計(jì)。分別研究了靜混結(jié)構(gòu)參數(shù)及流體初始流速對(duì)其混合均勻度及出入口壓差的影響,并得出作用關(guān)系。根據(jù)仿真結(jié)果對(duì)靜混結(jié)構(gòu)參數(shù)進(jìn)行了初步優(yōu)化。利用PAM溶液粘度計(jì)算模型,分別對(duì)靜混結(jié)構(gòu)參數(shù)及流體初始流速對(duì)于出口處流體粘度的影響進(jìn)行了仿真分析,得出作用關(guān)系并根據(jù)仿真結(jié)果進(jìn)一步優(yōu)化了靜混結(jié)構(gòu)參數(shù)。在兩次優(yōu)化結(jié)果的基礎(chǔ)上,對(duì)結(jié)構(gòu)形式進(jìn)行改進(jìn),設(shè)計(jì)了兩種不同形式的靜混單元,并對(duì)二者混合效果進(jìn)行仿真,結(jié)果表明流體通過兩種靜混器后均混合均勻,且后者出口處混合液粘度高于前者,證明第二種結(jié)構(gòu)形式更優(yōu)。最后搭建實(shí)驗(yàn)裝置,對(duì)優(yōu)化后靜混的粘損控制效果進(jìn)行驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,在保證混合均勻的前提下,優(yōu)化設(shè)計(jì)的兩種靜混的粘損值均低于常規(guī)靜混,且二者的粘損情況與仿真結(jié)果較為吻合,在一定程度上驗(yàn)證了理論與仿真分析的正確性。
[Abstract]:Right now. Tertiary oil recovery (EOR) technology has been widely used in major oilfields in China. Polymer injection (abbreviated as "polymer injection"). Because of its high oil recovery efficiency, flooding method has become the main way of oil recovery in tertiary oil recovery technology. The static Mixer ("static Mixer") is used to produce polyacrylamide (PAM). The oil displacement efficiency is mainly determined by the viscosity of the solution after the mixture of mother liquor and water is injected into the bottom hole for oil displacement. The higher the viscosity, the higher the oil displacement efficiency. The higher the viscosity loss rate is, the higher the oil displacement efficiency is due to the strong shear effect of the conventional static mixer. Through the analysis of static mixing mechanism and viscosity theory of PAM solution, the influence factors of solution viscosity change are clarified, including static mixing structure parameters (unit pitch). Element spacing) and structure form (element rotation combination, fluid initial velocity three aspects. On this basis, through computational fluid dynamics simulation, the above three aspects of optimization design. Two kinds of improved low-shear static mixing are obtained, and the experiment results show that the optimization is effective and the viscosity loss is controlled. The main contents of this paper are as follows: firstly, the mixing mechanism of static mixing is analyzed. The pressure distribution and velocity distribution of the fluid in static mixing are obtained, and then the commonly used viscosity calculation model of polymer solution is described. Based on the Carreau equation, the viscosity calculation model of PAM solution was established, and the structure of PAM solution was defined according to the characteristics of PAM solution. The optimal design of viscous loss control is carried out from three aspects of structure parameters and initial velocity, and then the method of computational fluid dynamics simulation is used. The advanced CFX software is used to compare the performance of the new spiral static mixing developed by the conventional static mixing laboratory. The simulation results show that the performance of the latter is better. On this basis, the optimal design of spiral static mixing is carried out. The effects of static mixing structure parameters and initial fluid velocity on the mixing uniformity and inlet pressure difference are studied respectively. According to the simulation results, the static mixing structure parameters were preliminarily optimized, and the viscosity calculation model of PAM solution was used. The effects of static mixing structure parameters and initial flow velocity on the viscosity of the fluid at the outlet are simulated and analyzed respectively. According to the simulation results, the static mixing structure parameters are further optimized. On the basis of the two optimization results, the structure form is improved, and two different static mixing elements are designed. The simulation results show that the fluid mixture is uniform after passing through the two static mixers, and the viscosity of the mixture at the exit of the latter is higher than that of the former, which proves that the second structure is better. Finally, the experimental device is built. The experimental results show that the viscosity loss of the two kinds of static mixing is lower than that of the conventional static mixing under the premise of uniform mixing. The viscosity loss of the two is in good agreement with the simulation results, which verifies to some extent the correctness of the theory and the simulation analysis.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE934
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 唐康泰,潘松漢;聚丙烯酰胺結(jié)構(gòu)和溶解性能[J];廣州化工;1996年03期
2 楊志鋼;;三次采油技術(shù)及進(jìn)展[J];化工進(jìn)展;2011年S1期
3 范存良;靜態(tài)混合器的選型與應(yīng)用進(jìn)展[J];化工裝備技術(shù);1997年06期
4 吳雨;張力鈞;宋忠俊;;靜態(tài)混合器在石油化工中的應(yīng)用[J];天然氣與石油;2014年03期
5 侯吉瑞,劉中春,張淑芬,岳湘安,楊錦宗;堿對(duì)聚丙烯酰胺的分子形態(tài)及其流變性的影響[J];物理化學(xué)學(xué)報(bào);2003年03期
相關(guān)碩士學(xué)位論文 前1條
1 張宏斌;高粘度聚合物母液靜態(tài)混合器混合特性研究[D];東北石油大學(xué);2013年
,本文編號(hào):1380425
本文鏈接:http://sikaile.net/kejilunwen/shiyounenyuanlunwen/1380425.html
最近更新
教材專著